Robert H Silverman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345808/publications.pdf

Version: 2024-02-01

66 papers 10,495 citations

38 h-index 98798 67 g-index

72 all docs 72 docs citations

times ranked

72

10494 citing authors

#	Article	IF	CITATIONS
1	HOW CELLS RESPOND TO INTERFERONS. Annual Review of Biochemistry, 1998, 67, 227-264.	11.1	3,630
2	Activation of the interferon system by short-interfering RNAs. Nature Cell Biology, 2003, 5, 834-839.	10.3	1,354
3	Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature, 2007, 448, 816-819.	27.8	536
4	Viral Encounters with 2′,5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. Journal of Virology, 2007, 81, 12720-12729.	3.4	522
5	Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology. Cell Host and Microbe, 2012, 11, 607-616.	11.0	242
6	2-5A-dependent RNase Molecules Dimerize during Activation by 2-5A. Journal of Biological Chemistry, 1995, 270, 4133-4137.	3.4	222
7	Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2241-2246.	7.1	221
8	PKR and RNase L Contribute to Protection against Lethal West Nile Virus Infection by Controlling Early Viral Spread in the Periphery and Replication in Neurons. Journal of Virology, 2006, 80, 7009-7019.	3.4	220
9	Targeted therapy of human malignant glioma in a mouse model by 2-5A antisense directed against telomerase RNA. Oncogene, 1998, 16, 3323-3330.	5.9	194
10	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	4.7	184
11	The role of 2′-5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death and Differentiation, 1998, 5, 313-320.	11.2	173
12	SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	159
13	Implications for RNase L in Prostate Cancer Biology. Biochemistry, 2003, 42, 1805-1812.	2.5	147
14	Cytosolic Double-Stranded RNA Activates the NLRP3 Inflammasome via MAVS-Induced Membrane Permeabilization and K+ Efflux. Journal of Immunology, 2014, 193, 4214-4222.	0.8	132
15	RNase L Plays a Role in the Antiviral Response to West Nile Virus. Journal of Virology, 2006, 80, 2987-2999.	3.4	129
16	RNase L Activates the NLRP3 Inflammasome during Viral Infections. Cell Host and Microbe, 2015, 17, 466-477.	11.0	128
17	An Apoptotic Signaling Pathway in the Interferon Antiviral Response Mediated by RNase L and c-Jun NH2-terminal Kinase. Journal of Biological Chemistry, 2004, 279, 1123-1131.	3.4	127
18	Middle East Respiratory Syndrome Coronavirus NS4b Protein Inhibits Host RNase L Activation. MBio, 2016, 7, e00258.	4.1	125

#	Article	IF	CITATIONS
19	Dimeric Structure of Pseudokinase RNase L Bound to 2-5A Reveals a Basis for Interferon-Induced Antiviral Activity. Molecular Cell, 2014, 53, 221-234.	9.7	123
20	Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. ELife, 2017, 6, .	6.0	121
21	Homologous $2\hat{a}\in^2$, $5\hat{a}\in^2$ -phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13114-13119.	7.1	118
22	A Bipartite Model of 2-5A-dependent RNase L. Journal of Biological Chemistry, 1997, 272, 22236-22242.	3.4	106
23	Small-molecule activators of RNase L with broad-spectrum antiviral activity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9585-9590.	7.1	100
24	A scientific journey through the 2-5A/RNase L system. Cytokine and Growth Factor Reviews, 2007, 18, 381-388.	7.2	96
25	Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. Rna, 2001, 7, 361-373.	3.5	94
26	Caspase-Dependent Apoptosis by 2′,5′-Oligoadenylate Activation of RNase L Is Enhanced by IFN-β. Journal o Interferon and Cytokine Research, 2000, 20, 1091-1100.	f 1.2	79
27	Inhibition of RNase L and RNA-dependent Protein Kinase (PKR) by Sunitinib Impairs Antiviral Innate Immunity. Journal of Biological Chemistry, 2011, 286, 26319-26326.	3.4	67
28	Viral Phosphodiesterases That Antagonize Double-Stranded RNA Signaling to RNase L by Degrading 2-5A. Journal of Interferon and Cytokine Research, 2014, 34, 455-463.	1.2	64
29	The human retrovirus XMRV in prostate cancer and chronic fatigue syndrome. Nature Reviews Urology, 2010, 7, 392-402.	3.8	62
30	Effect of Deficiency of the Double-Stranded RNA-Dependent Protein Kinase, PKR, on Antiviral Resistance in the Presence or Absence of Ribonuclease L: HSV-1 Replication Is Particularly Sensitive to Deficiency of the Major IFN-Mediated Enzymes. Journal of Interferon and Cytokine Research, 2000, 20, 653-659.	1.2	61
31	OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5071-5076.	7.1	58
32	Suppression of ovarian carcinoma cell growth in vivo by the interferon-inducible plasma membrane protein, phospholipid scramblase 1. Cancer Research, 2002, 62, 397-402.	0.9	53
33	Cell-Type-Specific Activation of the Oligoadenylate Synthetase–RNase L Pathway by a Murine Coronavirus. Journal of Virology, 2013, 87, 8408-8418.	3.4	52
34	A viral RNA competitively inhibits the antiviral endoribonuclease domain of RNase L. Rna, 2008, 14, 1026-1036.	3.5	50
35	RNase L Targets Distinct Sites in Influenza A Virus RNAs. Journal of Virology, 2015, 89, 2764-2776.	3.4	49
36	Selection and cloning of poly(rC)-binding protein 2 and Raf kinase inhibitor protein RNA activators of 2′,5′-oligoadenylate synthetase from prostate cancer cells. Nucleic Acids Research, 2006, 34, 6684-6695.	14.5	48

#	Article	IF	CITATIONS
37	Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Research, 2014, 42, 5202-5216.	14.5	46
38	Cell-Type-Specific Effects of RNase L on Viral Induction of Beta Interferon. MBio, 2014, 5, e00856-14.	4.1	45
39	Activation of RNase L by Murine Coronavirus in Myeloid Cells Is Dependent on Basal (i) Oas (i) Gene Expression and Independent of Virus-Induced Interferon. Journal of Virology, 2016, 90, 3160-3172.	3.4	44
40	Murine AKAP7 Has a $2\hat{a}\in^2$, $5\hat{a}\in^2$ -Phosphodiesterase Domain That Can Complement an Inactive Murine Coronavirus ns2 Gene. MBio, 2014, 5, e01312-14.	4.1	41
41	<i>IFNL4</i> -Î"G Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clinical Cancer Research, 2018, 24, 5471-5481.	7.0	37
42	Zika Virus Production Is Resistant to RNase L Antiviral Activity. Journal of Virology, 2019, 93, .	3.4	34
43	RNase L is a negative regulator of cell migration. Oncotarget, 2015, 6, 44360-44372.	1.8	32
44	Lineage A Betacoronavirus NS2 Proteins and the Homologous Torovirus Berne pp1a Carboxy-Terminal Domain Are Phosphodiesterases That Antagonize Activation of RNase L. Journal of Virology, 2017, 91, .	3.4	30
45	Translational control perks up. Nature, 1999, 397, 209-211.	27.8	28
46	Antisense cancer therapy: The state of the science. Current Oncology Reports, 2000, 2, 23-30.	4.0	27
47	A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L. PLoS Pathogens, 2018, 14, e1006989.	4.7	27
48	Reverse Genetics Reveals a Role of Rotavirus VP3 Phosphodiesterase Activity in Inhibiting RNase L Signaling and Contributing to Intestinal Viral Replication <i>In Vivo</i> . Journal of Virology, 2020, 94,	3.4	24
49	Skin Allograft Rejection Is Suppressed in Mice Lacking the Antiviral Enzyme, 2′,5′-Oligoadenylate-Dependent RNase L. Viral Immunology, 2002, 15, 77-83.	1.3	22
50	Suppressing <scp>PAR</scp> ylation by 2′,5′â€oligoadenylate synthetase 1 inhibits <scp>DNA</scp> damageâ€induced cell death. EMBO Journal, 2020, 39, e101573.	7.8	22
51	H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114324119.	7.1	21
52	Activation of RNase L in Egyptian Rousette Bat-Derived RoNi/7 Cells Is Dependent Primarily on OAS3 and Independent of MAVS Signaling. MBio, 2019, 10, .	4.1	17
53	A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24802-24812.	7.1	17
54	Specificity and Mechanism of Coronavirus, Rotavirus, and Mammalian Two-Histidine Phosphoesterases That Antagonize Antiviral Innate Immunity. MBio, 2021, 12, e0178121.	4.1	17

#	Article	IF	CITATIONS
55	Analysis and origins of the human and mouse RNase L genes: mediators of interferon action. Mammalian Genome, 2000, 11, 989-992.	2.2	15
56	RNase L activity does not contribute to host RNA degradation induced by herpes simplex virus infection. Journal of General Virology, 2003, 84, 925-928.	2.9	9
57	2′,5′-Oligoadenylate Antisense Chimeras for Targeted Ablation of RNA. ACS Symposium Series, 1994, , 118-132.	0.5	6
58	Zika virus employs the host antiviral RNase L protein to support replication factory assembly. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
59	Crystal structure of the mouse hepatitis virus ns2 phosphodiesterase domain that antagonizes RNase L activation. Journal of General Virology, 2016, 97, 880-886.	2.9	6
60	Caps Off to Poxviruses. Cell Host and Microbe, 2015, 17, 287-289.	11.0	5
61	2-Bromoadenosine-Substituted 2′,5′-Oligoadenylates Modulate Binding and Activation Abilities of Human Recombinant RNase L. Nucleosides & Nucleotides, 1998, 17, 2323-2333.	0.5	4
62	Identification of Small Molecule Inhibitors of RNase L by Fragment-Based Drug Discovery. Journal of Medicinal Chemistry, 2022, 65, 1445-1457.	6.4	4
63	Expression of Mammalian Antiviral Enzymes from the 2–5A System in Transgenic Plants. Journal of Plant Biochemistry and Biotechnology, 1996, 5, 69-74.	1.7	3
64	Inhibition of Respiratory Syncytial Virus by Double Termini-Protected 2–5A Antisense Chimeras. Nucleosides & Nucleotides, 1997, 16, 1735-1738.	0.5	2
65	Transcriptional control of the human plasma membranephospholipid scramblase 1 gene is mediated by interferon-α. Blood, 2000, 95, 2593-2599.	1.4	2
66	Role of Oligoadenylate Synthetases in Myeloid Neoplasia. Blood, 2020, 136, 29-30.	1.4	0