
Francesca Gioia Klinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/834571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	YAP regulates porcine skin-derived stem cells self-renewal partly by repressing Wnt/β-catenin signaling pathway. Histochemistry and Cell Biology, 2022, 157, 39-50.	0.8	5
2	Analysis of Secreted Proteins from Prepubertal Ovarian Tissues Exposed In Vitro to Cisplatin and LH. Cells, 2022, 11, 1208.	1.8	1
3	The p63 C-terminus is essential for murine oocyte integrity. Nature Communications, 2021, 12, 383.	5.8	23
4	SARS-CoV-2 persistence at subzero temperatures. Journal of Assisted Reproduction and Genetics, 2021, 38, 779-781.	1.2	6
5	Effects of low-dose X-ray medical diagnostics on female gonads: Insights from large animal oocytes and human ovaries as complementary models. PLoS ONE, 2021, 16, e0253536.	1.1	1
6	To Be or Not to Be a Germ Cell: The Extragonadal Germ Cell Tumor Paradigm. International Journal of Molecular Sciences, 2021, 22, 5982.	1.8	23
7	The cyto-protective effects of LH on ovarian reserve and female fertility during exposure to gonadotoxic alkylating agents in an adult mouse model. Human Reproduction, 2021, 36, 2514-2528.	0.4	15
8	PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. International Journal of Molecular Sciences, 2021, 22, 9838.	1.8	27
9	Protective Mechanism of Luteinizing Hormone and Follicle-Stimulating Hormone Against Nicotine-Induced Damage of Mouse Early Folliculogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 723388.	1.8	3
10	The ovarian reserve as target of insulin/IGF and ROS in metabolic disorder-dependent ovarian dysfunctions. Reproduction and Fertility, 2021, 2, R103-R112.	0.6	11
11	Human adipose-derived stromal cells transplantation prolongs reproductive lifespan on mouse models of mild and severe premature ovarian insufficiency. Stem Cell Research and Therapy, 2021, 12, 537.	2.4	11
12	Immunohistochemical Study on the Expression of G-CSF, G-CSFR, VEGF, VEGFR-1, Foxp3 in First Trimester Trophoblast of Recurrent Pregnancy Loss in Pregnancies Treated with G-CSF and Controls. International Journal of Molecular Sciences, 2020, 21, 285.	1.8	23
13	miR-378-3p maintains the size of mouse primordial follicle pool by regulating cell autophagy and apoptosis. Cell Death and Disease, 2020, 11, 737.	2.7	17
14	Expression and possible roles of extracellular signal-related kinases 1-2 (ERK1-2) in mouse primordial germ cell development. Journal of Reproduction and Development, 2020, 66, 399-409.	0.5	7
15	IUI and uterine lavage of in vivo–produced blastocysts for PGT purposes: is it a technically and ethically reasonable perspective? Is it actually needed?. Journal of Assisted Reproduction and Genetics, 2020, 37, 1579-1582.	1.2	3
16	COVID-19: the perspective of Italian embryologists managing the IVF laboratory in pandemic emergency. Human Reproduction, 2020, 35, 1004-1005.	0.4	23
17	Melatonin ameliorates murine fetal oocyte meiotic dysfunction in F1 and F2 offspring caused by nicotine exposure during pregnancy. Environmental Pollution, 2020, 263, 114519.	3.7	11
18	Membrane Estrogen Receptor (GPER) and Follicle-Stimulating Hormone Receptor (FSHR) Heteromeric Complexes Promote Human Ovarian Follicle Survival. IScience, 2020, 23, 101812.	1.9	29

#	Article	IF	CITATIONS
19	Ovarian damage from chemotherapy and current approaches to its protection. Human Reproduction Update, 2019, 25, 673-693.	5.2	309
20	Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biology, 2019, 78-79, 11-23.	1.5	23
21	Distinct effects of epirubicin, cisplatin and cyclophosphamide on ovarian somatic cells of prepuberal ovaries. Aging, 2019, 11, 10532-10556.	1.4	5
22	Oocyte DNA damage quality control requires consecutive interplay of CHK2 and CK1 to activate p63. Nature Structural and Molecular Biology, 2018, 25, 261-269.	3.6	112
23	The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Frontiers in Immunology, 2018, 9, 2808.	2.2	32
24	Programmed cell death in the human ovary. Minerva Ginecologica, 2018, 70, 549-560.	0.8	21
25	Complete in vitro oogenesis: retrospects and prospects. Cell Death and Differentiation, 2017, 24, 1845-1852.	5.0	35
26	LH prevents cisplatin-induced apoptosis in oocytes and preserves female fertility in mouse. Cell Death and Differentiation, 2017, 24, 72-82.	5.0	82
27	Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncology, 2016, 12, 1699-1711.	1.1	12
28	Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability. Journal of Biological Chemistry, 2016, 291, 3821-3836.	1.6	14
29	Multifaceted programmed cell death in the mammalian fetal ovary. International Journal of Developmental Biology, 2015, 59, 51-54.	0.3	33
30	Programmed cell death in mouse primordial germ cells. International Journal of Developmental Biology, 2015, 59, 41-49.	0.3	15
31	Hematopoietic activity in putative mouse primordial germ cell populations. Mechanisms of Development, 2015, 136, 53-63.	1.7	23
32	Effect of Culture in Simulated Microgravity on the Development of Mouse Embryonic Testes. Advances in Clinical and Experimental Medicine, 2015, 24, 769-774.	0.6	6
33	Minimal Concentrations of Retinoic Acid Induce Stimulation by Retinoic Acid 8 and Promote Entry into Meiosis in Isolated Pregonadal and Gonadal Mouse Primordial Germ Cells. Biology of Reproduction, 2013, 88, 145-145.	1.2	26
34	Reply to: Cisplatin-induced primordial follicle oocyte killing and loss of fertility are not prevented by imatinib. Nature Medicine, 2012, 18, 1172-1174.	15.2	51
35	Poly(ADP-ribosyl)ation Acts in the DNA Demethylation of Mouse Primordial Germ Cells Also with DNA Damage-Independent Roles. PLoS ONE, 2012, 7, e46927.	1.1	60
36	Embryotoxicity assays for leached components from dental restorative materials. Reproductive Biology and Endocrinology, 2011, 9, 136.	1.4	24

#	Article	IF	CITATIONS
37	Cell Death in Mammalian Ovary. , 2011, , .		4
38	DNA Damage and Apoptosis in Fetal and Ovarian Reserve Oocytes. , 2011, , 143-163.		3
39	Programmed Cell Death in Fetal Oocytes. , 2011, , 125-142.		1
40	Regulators of mitotic proliferation in mouse primordial germ cells. Reproduction, 2009, 138, 185.	1.1	0
41	Inhibition of the c-Abl–TAp63 pathway protects mouse oocytes from chemotherapy-induced death. Nature Medicine, 2009, 15, 1179-1185.	15.2	307
42	Identification of Multipotent Cytotrophoblast Cells from Human First Trimester Chorionic Villi. Cloning and Stem Cells, 2009, 11, 535-556.	2.6	28
43	Cell death in fetal oocytes: Many players for multiple pathways. Autophagy, 2008, 4, 240-242.	4.3	66
44	Analysis of programmed cell death in mouse fetal oocytes. Reproduction, 2007, 134, 241-252.	1.1	66
45	Isolation of apoptotic mouse fetal oocytes by AnnexinV assay. International Journal of Developmental Biology, 2007, 51, 157-160.	0.3	13
46	câ€Flip expression and function in fetal mouse gonocytes. FASEB Journal, 2006, 20, 124-126.	0.2	15
47	Stage-variations of anandamide hydrolase activity in the mouse uterus during the natural oestrus cycle. Journal of Experimental & Clinical Assisted Reproduction, 2006, 3, 3.	0.4	9
48	Establishment of oocyte population in the fetal ovary: primordial germ cell proliferation and oocyte programmed cell death. Reproductive BioMedicine Online, 2005, 10, 182-191.	1.1	94
49	Experimental approaches to the study of primordial germ cell lineage and proliferation. Human Reproduction Update, 2004, 10, 197-206.	5.2	71
50	Mouse blastocysts release a lipid which activates anandamide hydrolase in intact uterus. Molecular Human Reproduction, 2004, 10, 215-221.	1.3	44
51	Akt/PTEN Signaling Mediates Estrogen-Dependent Proliferation of Primordial Germ Cellsin Vitro. Molecular Endocrinology, 2003, 17, 2630-2638.	3.7	88
52	Kit regulatory elements required for expression in developing hematopoietic and germ cell lineages. Blood, 2003, 102, 3954-3962.	0.6	77
53	In Vitro Development of Growing Oocytes from Fetal Mouse Oocytes: Stage-Specific Regulation by Stem Cell Factor and Granulosa Cells. Developmental Biology, 2002, 244, 85-95.	0.9	103
54	Derivation in culture of primordial germ cells from cells of the mouse epiblast: phenotypic induction and growth control by Bmp4 signalling. Mechanisms of Development, 2002, 112, 15-24.	1.7	78

#	Article	IF	CITATIONS
55	A comparative study of cytotoxic effects of N-ethyl-N-nitrosourea, adriamycin, and mono-(2-ethylhexyl)phthalate on mouse primordial germ cells. Cell Biology and Toxicology, 2002, 18, 131-145.	2.4	19
56	Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. FEBS Journal, 2000, 267, 2991-2997.	0.2	109
57	Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. , 2000, 267, 2991.		3
58	Dominance of ovarian follicles is determined by follicle-stimulating hormone receptor (FSHR) and G protein-coupled estrogen receptor (GPER) heteromers. Endocrine Abstracts, 0, , .	0.0	0