
Kiyoung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345650/publications.pdf

Version: 2024-02-01

KINOLING LEE

#	Article	IF	CITATIONS
1	Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing. Science, 2007, 317, 222-225.	12.6	3,142
2	One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews, 2014, 114, 9385-9454.	47.7	1,045
3	TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale, 2010, 2, 45-59.	5.6	571
4	Anodic Formation of Thick Anatase TiO ₂ Mesosponge Layers for High-Efficiency Photocatalysis. Journal of the American Chemical Society, 2010, 132, 1478-1479.	13.7	163
5	Ultrafast Growth of Highly Ordered Anodic TiO ₂ Nanotubes in Lactic Acid Electrolytes. Journal of the American Chemical Society, 2012, 134, 11316-11318.	13.7	133
6	Labelâ€Free and Selfâ€ s ignal Amplifying Molecular DNA Sensors Based on Bioconjugated Polyelectrolytes. Advanced Functional Materials, 2007, 17, 2580-2587.	14.9	114
7	Nb doping of TiO ₂ nanotubes for an enhanced efficiency of dye-sensitized solar cells. Chemical Communications, 2011, 47, 2032-2034.	4.1	114
8	Oxide Nanotubes on Tiâ^'Ru Alloys: Strongly Enhanced and Stable Photoelectrochemical Activity for Water Splitting. Journal of the American Chemical Society, 2011, 133, 5629-5631.	13.7	109
9	Intrinsic Au Decoration of Growing TiO ₂ Nanotubes and Formation of a Highâ€Efficiency Photocatalyst for H ₂ Production. Advanced Materials, 2013, 25, 6133-6137.	21.0	103
10	Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. ACS Nano, 2015, 9, 7113-7123.	14.6	102
11	Flexible nanoporous activated carbon cloth for achieving high H2, CH4, and CO2 storage capacities and selective CO2/CH4 separation. Chemical Engineering Journal, 2020, 379, 122367.	12.7	93
12	Formation of â€~single walled' TiO2 nanotubes with significantly enhanced electronic properties for higher efficiency dye-sensitized solar cells. Chemical Communications, 2013, 49, 2067.	4.1	91
13	Selfâ€Organized Arrays of Singleâ€Metal Catalyst Particles in TiO ₂ Cavities: A Highly Efficient Photocatalytic System. Angewandte Chemie - International Edition, 2013, 52, 7514-7517.	13.8	89
14	Water annealing and other low temperature treatments of anodic TiO2 nanotubes: A comparison of properties and efficiencies in dye sensitized solar cells and for water splitting. Electrochimica Acta, 2012, 82, 98-102.	5.2	87
15	Taâ€Doped TiO ₂ Nanotubes for Enhanced Solarâ€Light Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2013, 19, 5841-5844.	3.3	87
16	Size-Selective Separation of Macromolecules by Nanochannel Titania Membrane with Self-Cleaning (Declogging) Ability. Journal of the American Chemical Society, 2010, 132, 7893-7895.	13.7	79
17	Partially unzipped carbon nanotubes for high-rate and stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 819-826.	10.3	76
18	Formation of a Nonâ€Thicknessâ€Limited Titanium Dioxide Mesosponge and its Use in Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2009, 48, 9326-9329.	13.8	75

#	Article	IF	CITATIONS
19	Anodic Formation of Selfâ€Organized Cobalt Oxide Nanoporous Layers. Angewandte Chemie - International Edition, 2013, 52, 2077-2081.	13.8	71
20	Anodic formation of high aspect ratio, self-ordered Nb2O5 nanotubes. Chemical Communications, 2012, 48, 4244.	4.1	70
21	Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). Chemical Communications, 2012, 48, 8685.	4.1	67
22	Small diameter TiO2 nanotubes vs. nanopores in dye sensitized solar cells. Electrochemistry Communications, 2012, 15, 1-4.	4.7	65
23	Anodic TiO2 nanotubes: double walled vs. single walled. Faraday Discussions, 2013, 164, 107.	3.2	64
24	Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. Electrochemistry Communications, 2010, 12, 574-578.	4.7	61
25	Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. Environmental Pollution, 2021, 269, 116170.	7.5	58
26	Enhanced performance of dye-sensitized solar cells based on TiO ₂ nanotube membranes using an optimized annealing profile. Chemical Communications, 2015, 51, 1631-1634.	4.1	55
27	Self-decoration of Pt metal particles on TiO ₂ nanotubes used for highly efficient photocatalytic H ₂ production. Chemical Communications, 2014, 50, 6123-6125.	4.1	54
28	Anodic TiO2 nanotubes: Influence of top morphology on their photocatalytic performance. Electrochemistry Communications, 2012, 22, 162-165.	4.7	53
29	Enhancing the Water Splitting Efficiency of Snâ€Doped Hematite Nanoflakes by Flame Annealing. Chemistry - A European Journal, 2014, 20, 77-82.	3.3	51
30	A facile synthesis tool of nanoporous carbon for promising H ₂ , CO ₂ , and CH ₄ sorption capacity and selective gas separation. Journal of Materials Chemistry A, 2018, 6, 23087-23100.	10.3	51
31	Optimizing TiO ₂ Nanotube Top Geometry for Use in Dye ensitized Solar Cells. Chemistry - A European Journal, 2012, 18, 11862-11866.	3.3	50
32	Thermal air oxidation of Fe: rapid hematite nanowire growth and photoelectrochemical water splitting performance. Electrochemistry Communications, 2012, 23, 59-62.	4.7	50
33	Sustainable nanoporous carbon for CO2, CH4, N2, H2 adsorption and CO2/CH4 and CO2/N2 separation. Energy, 2018, 158, 9-16.	8.8	49
34	Molten <i>o</i> -H ₃ PO ₄ : A New Electrolyte for the Anodic Synthesis of Self-Organized Oxide Structures â^' WO ₃ Nanochannel Layers and Others. Journal of the American Chemical Society, 2015, 137, 5646-5649.	13.7	47
35	Effect of Electrolyte Conductivity on the Formation of a Nanotubular TiO2 Photoanode for a Dye-Sensitized Solar Cell. Journal of the Korean Physical Society, 2009, 54, 1027-1031.	0.7	47
36	Tuning the Selectivity of Photocatalytic Synthetic Reactions Using Modified TiO ₂ Nanotubes. Angewandte Chemie - International Edition, 2014, 53, 12605-12608.	13.8	45

#	Article	IF	CITATIONS
37	Highly self-ordered nanochannel TiO2 structures by anodization in a hot glycerol electrolyte. Chemical Communications, 2011, 47, 5789.	4.1	44
38	Ideally ordered porous TiO2 prepared by anodization of pretextured Ti by nanoimprinting process. Electrochemistry Communications, 2015, 50, 73-76.	4.7	44
39	Highly ordered TiO2 nanotube-stumps with memristive response. Electrochemistry Communications, 2013, 34, 177-180.	4.7	42
40	Hydrothermal growth of highly oriented single crystalline Ta ₂ O ₅ nanorod arrays and their conversion to Ta ₃ N ₅ for efficient solar driven water splitting. Chemical Communications, 2014, 50, 15561-15564.	4.1	42
41	Fast fabrication of Ta2O5 nanotube arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Electrochemistry Communications, 2015, 50, 15-19.	4.7	42
42	Interfacial growth of the optimal BiVO4 nanoparticles onto self-assembled WO3 nanoplates for efficient photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 557, 478-487.	9.4	42
43	Effective synthesis route of renewable nanoporous carbon adsorbent for high energy gas storage and CO2/N2 selectivity. Renewable Energy, 2020, 161, 30-42.	8.9	41
44	Improved water-splitting behaviour of flame annealed TiO2 nanotubes. Electrochemistry Communications, 2011, 13, 1030-1034.	4.7	39
45	Highly ordered nanoporous Ta2O5 formed by anodization of Ta at high temperatures in a glycerol/phosphate electrolyte. Electrochemistry Communications, 2011, 13, 542-545.	4.7	39
46	Nb-doping of TiO2/SrTiO3 nanotubular heterostructures for enhanced photocatalytic water splitting. Electrochemistry Communications, 2012, 17, 56-59.	4.7	39
47	Use of Anodic TiO ₂ Nanotube Layers as Mesoporous Scaffolds for Fabricating CH ₃ NH ₃ PbI ₃ Perovskiteâ€Based Solidâ€State Solar Cells. ChemElectroChem, 2015, 2, 824-828.	3.4	39
48	Anodically formed transparent mesoporous TiO2 electrodes for high electrochromic contrast. Journal of Materials Chemistry, 2012, 22, 9821.	6.7	38
49	Highâ€Aspectâ€Ratio Dyeâ€Sensitized Solar Cells Based on Robust, Fastâ€Growing TiO ₂ Nanotubes Chemistry - A European Journal, 2013, 19, 2966-2970.	• 3.3	38
50	A self-cleaning nonenzymatic glucose detection system based on titania nanotube arrays modified with platinum nanoparticles. Electrochemistry Communications, 2011, 13, 1217-1220.	4.7	37
51	Ruâ€doped TiO ₂ nanotubes: Improved performance in dyeâ€sensitized solar cells. Physica Status Solidi - Rapid Research Letters, 2012, 6, 169-171.	2.4	37
52	Flame annealing effects on self-organized TiO2 nanotubes. Electrochimica Acta, 2012, 66, 12-21.	5.2	37
53	Efficient synthetic approach for nanoporous adsorbents capable of pre- and post-combustion CO2 capture and selective gas separation. Journal of CO2 Utilization, 2021, 45, 101404.	6.8	36
54	Monodispersed core/shell nanospheres of ZnS/NiO with enhanced H2 generation and quantum efficiency at versatile photocatalytic conditions. Journal of Hazardous Materials, 2021, 413, 125359.	12.4	36

#	Article	IF	CITATIONS
55	Formation of Highly Ordered Nanochannel Nb Oxide by Selfâ€Organizing Anodization. Chemistry - A European Journal, 2012, 18, 9521-9524.	3.3	35
56	Direct anodic growth of thick WO3 mesosponge layers and characterization of their photoelectrochemical response. Electrochimica Acta, 2010, 56, 828-833.	5.2	34
57	Role of Transparent Electrodes for High Efficiency TiO ₂ Nanotube Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16562-16566.	3.1	34
58	Microwave synthesized nano-photosensitizer of CdS QD/MoO3–OV/g–C3N4 heterojunction catalyst for hydrogen evolution under full-spectrum light. Ceramics International, 2020, 46, 28467-28480.	4.8	32
59	Self-organized transparent 1D TiO 2 nanotubular photoelectrodes grown by anodization of sputtered and evaporated Ti layers: A comparative photoelectrochemical study. Chemical Engineering Journal, 2017, 308, 745-753.	12.7	31
60	Ta doping for an enhanced efficiency of TiO2 nanotube based dye-sensitized solar cells. Electrochemistry Communications, 2012, 25, 11-14.	4.7	30
61	Influence of hydrodynamic conditions on growth and geometry of anodic TiO2 nanotubes and their use towards optimized DSSCs. Journal of Materials Chemistry, 2012, 22, 12792.	6.7	30
62	Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochemistry Communications, 2013, 26, 1-4.	4.7	30
63	Controlled Thermal Annealing Tunes the Photoelectrochemical Properties of Nanochanneled Tinâ€Oxide Structures. ChemElectroChem, 2014, 1, 1133-1137.	3.4	30
64	Catalyst-Doped Anodic TiO2 Nanotubes: Binder-Free Electrodes for (Photo)Electrochemical Reactions. Catalysts, 2018, 8, 555.	3.5	30
65	Domain structure of epitaxial PbTiO3 thin films on Pt(001)/MgO(001) substrates. Journal of Applied Physics, 2004, 95, 236-240.	2.5	29
66	Reliable Metal Deposition into TiO ₂ Nanotubes for Leakageâ€Free Interdigitated Electrode Structures and Use as a Memristive Electrode. Angewandte Chemie - International Edition, 2013, 52, 12381-12384.	13.8	29
67	Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors. Journal of Colloid and Interface Science, 2019, 557, 423-437.	9.4	29
68	Mesostructured g-C3N4 nanosheets interconnected with V2O5 nanobelts as electrode for coin-cell-type-asymmetric supercapacitor device. Materials Today Energy, 2021, 21, 100699.	4.7	29
69	Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte. Electrochemistry Communications, 2013, 34, 9-13.	4.7	28
70	Topographical study of TiO 2 nanostructure surface for photocatalytic hydrogen production. Electrochimica Acta, 2015, 179, 423-430.	5.2	28
71	Self-organization and zinc doping of Ga2O3 nanoporous architecture: A potential nano-photogenerator for hydrogen. Electrochemistry Communications, 2013, 35, 112-115.	4.7	26
72	High-temperature annealing of TiO ₂ nanotube membranes for efficient dye-sensitized solar cells. Semiconductor Science and Technology, 2016, 31, 014010.	2.0	25

#	Article	IF	CITATIONS
73	Self-assembly of NiMoO4 nanoparticles on the ordered NiCo2O4 ultra-thin nanoflakes core-shell electrode for high energy density supercapacitors and efficient oxygen evolution reaction. Ceramics International, 2020, 46, 22837-22845.	4.8	25
74	Rapid Anodic Formation of High Aspect Ratio WO ₃ Layers with Selfâ€Ordered Nanochannel Geometry and Use in Photocatalysis. Chemistry - A European Journal, 2012, 18, 14622-14626.	3.3	24
75	Formation of Highly Ordered VO ₂ Nanotubular/Nanoporous Layers and Their Supercooling Effect in Phase Transitions. Advanced Materials, 2012, 24, 1571-1575.	21.0	24
76	Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps. Electrochemistry Communications, 2013, 34, 351-355.	4.7	24
77	Recent advances in water-splitting electrocatalysts based on manganese oxide. Carbon Resources Conversion, 2019, 2, 242-255.	5.9	24
78	Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors. Electrochimica Acta, 2020, 334, 135618.	5.2	22
79	Photocatalytic H2 production on self-decorated Au nanoparticles/TiO2 nanotubes under visible light. Electrochemistry Communications, 2014, 43, 105-108.	4.7	21
80	Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. Chemical Communications, 2014, 50, 7067-7070.	4.1	21
81	Excited state properties of anodic TiO ₂ nanotubes. Applied Physics Letters, 2013, 102, 233109.	3.3	20
82	Ordered "superlattice―TiO2/Nb2O5nanotube arrays with improved ion insertion stability. Chemical Communications, 2013, 49, 460-462.	4.1	20
83	Facile synthesis of Ce-doped α-cobalt hydroxide nanoflakes battery type electrode with an enhanced capacitive contribution for asymmetric supercapacitors. Journal of Energy Storage, 2020, 28, 101227.	8.1	20
84	Comparison of Anodic TiO ₂ â€Nanotube Membranes used for Frontsideâ€Illuminated Dye‧ensitized Solar Cells. ChemElectroChem, 2015, 2, 204-207.	3.4	19
85	Nanostructured cobalt-based metal-organic framework/cadmium sulfide electrocatalyst for enhanced oxygen evolution reaction and anion exchange membrane-based water electrolysis: Synergistic effect. Journal of Power Sources, 2022, 527, 231151.	7.8	18
86	Fabrication of epitaxial nanostructured ferroelectrics and investigation of their domain structures. Journal of Materials Science, 2009, 44, 5167-5181.	3.7	17
87	Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. Research on Chemical Intermediates, 2015, 41, 9333-9341.	2.7	17
88	Doubleâ€Side Coâ€Catalytic Activation of Anodic TiO ₂ Nanotube Membranes with Sputterâ€Coated Pt for Photocatalytic H ₂ Generation from Water/Methanol Mixtures. Chemistry - an Asian Journal, 2017, 12, 314-323.	3.3	17
89	Phase-tuned nanoporous vanadium pentoxide as binder-free cathode for lithium ion battery. Electrochimica Acta, 2020, 330, 135192.	5.2	17
90	Electrochromic and pseudocapacitive behavior of hydrothermally grown WO3 nanostructures. Thin Solid Films, 2020, 709, 138214.	1.8	17

#	Article	IF	CITATIONS
91	Tailoring the Composition of Ternary Layered Double Hydroxides for Supercapacitors and Electrocatalysis. Energy & Fuels, 2021, 35, 9660-9668.	5.1	17
92	Bottom sealing and photoelectrochemical properties of different types of anodic TiO2 nanotubes. Electrochimica Acta, 2013, 100, 229-235.	5.2	16
93	Znâ~'Coâ~'S Colloidal Nanocrystal Clusters as Efficient and Durable Bifunctional Electrocatalysts For Full Water Splitting. ChemNanoMat, 2019, 5, 761-765.	2.8	16
94	Biobased derived nanoporous carbon for hydrogen isotope separation. Microporous and Mesoporous Materials, 2020, 304, 109291.	4.4	16
95	Polyaniline-wrapped MnMoO ₄ as an active catalyst for hydrogen production by electrochemical water splitting. Dalton Transactions, 2022, 51, 6027-6035.	3.3	14
96	Enhancement of photoelectrochemical properties with α–Fe2O3 on surface modified FTO substrates. Ceramics International, 2020, 46, 20012-20019.	4.8	13
97	Boosted photocatalytic hydrogen evolution by tuning inner pore size and co-catalyst thickness of the anodic TiO2 nanotubes. Catalysis Today, 2021, 359, 3-8.	4.4	13
98	Photoelectrochemical H ₂ evolution on WO ₃ /BiVO ₄ enabled by single-crystalline TiO ₂ overlayer modulations. Nanoscale, 2021, 13, 16932-16941.	5.6	13
99	Nitrates: A new class of electrolytes for the rapid anodic growth of selfâ€ordered oxide nanopore layers on Ti and Ta. Physica Status Solidi - Rapid Research Letters, 2011, 5, 394-396.	2.4	12
100	Front side illuminated dye-sensitized solar cells using anodic TiO2 mesoporous layers grown on FTO-glass. Electrochemistry Communications, 2012, 22, 157-161.	4.7	12
101	Self-sealing anodization approach to enhance micro-Vickers hardness and corrosion protection of a die cast Al alloy. Journal of Physics and Chemistry of Solids, 2017, 103, 87-94.	4.0	12
102	Single‣tep Anodization for the Formation of WO ₃ â€Doped TiO ₂ Nanotubes Toward Enhanced Electrochromic Performance. ChemElectroChem, 2018, 5, 3379-3382.	3.4	12
103	Energy and environmental applications of Sn4+/Ti4+ doped α-Fe2O3@Cu2O/CuO photoanode under optimized photoelectrochemical conditions. Environmental Pollution, 2021, 271, 116318.	7.5	12
104	Magnetoelectric complex-oxide heterostructures. Philosophical Magazine Letters, 2007, 87, 155-164.	1.2	11
105	Boosting the oxygen evolution reaction performance of wrinkled Mn(OH)2 via conductive activation with a carbon binder. Journal of Energy Chemistry, 2022, 71, 580-587.	12.9	11
106	Throughâ€Hole, Selfâ€Ordered Nanoporous Oxide Layers on Titanium, Niobium and Titanium–Niobium Alloys in Aqueous and Organic Nitrate Electrolytes. ChemistryOpen, 2012, 1, 21-25.	1.9	10
107	Embedded Palladium Activation as a Facile Method for TiO ₂ â€Nanotube Nanoparticle Decoration: Cu ₂ Oâ€Induced Visibleâ€Light Photoactivity. ChemistryOpen, 2013, 2, 21-24.	1.9	10
108	Visible photoresponse of TiO2 nanotubes in comparison to that of nanoparticles and anodic thin film. Catalysis Today, 2022, 403, 39-46.	4.4	10

#	Article	IF	CITATIONS
109	Enhanced light absorption and charge separation of Inâ€doped <scp>ZnO</scp> nanorod arrays for photoelectrochemical waterâ€splitting application. International Journal of Energy Research, 2022, 46, 6264-6276.	4.5	10
110	Photoelectrochemical Poperties of Anodic TiO2 Nanosponge Layers. ECS Electrochemistry Letters, 2012, 2, H9-H11.	1.9	9
111	Electrochemically Assisted Self-Assembling of ZnF2-ZnO Nanospheres: Formation of Hierarchical Thin Porous Films. ECS Electrochemistry Letters, 2013, 3, E1-E3.	1.9	9
112	Templating Using Selfâ€Aligned TiO ₂ Nanotube Stumps: Highly Ordered Metal and Polymer Bumped Arrays. ChemElectroChem, 2014, 1, 64-66.	3.4	9
113	Redox-state modulated ORR activity of Cd-based Prussian blue analog frameworks transformed via anion exchange with controlled redox-state from CdCO3 cuboids. Journal of Electroanalytical Chemistry, 2019, 847, 113179.	3.8	9
114	Electrochemical detection of 2,4,6-trinitrotoluene reduction in aqueous solution by using highly ordered 1D TiO2 nanotube arrays. Materials Today Communications, 2020, 25, 101389.	1.9	9
115	Controlled synthesis and structural modulation to boost intrinsic photocatalytic activity of BiVO ₄ . CrystEngComm, 2022, 24, 2686-2696.	2.6	9
116	Electric field-driven one-step formation of vertical p–n junction TiO ₂ nanotubes exhibiting strong photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 2239-2247.	10.3	8
117	Upgraded charge transport in g-C3N4 nanosheets by boron doping and their heterojunction with 3D CdIn2S4 for efficient photodegradation of azo dye. Materials Today Chemistry, 2022, 24, 100857.	3.5	8
118	Influence of geometry and crystal structures of TiO2 nanotubes on micro Vickers hardness. Materials Letters, 2017, 192, 137-141.	2.6	7
119	Mesoporous design of ultrathin NiO nanosheet-coated vertically aligned hexagonal CoS nanoplate core–shell array for flexible all-solid-state supercapacitors. Journal of Alloys and Compounds, 2021, 863, 158064.	5.5	7
120	Controlling the geometric design of anodic 1D TiO2 nanotubes for the electrochemical reduction of 2,4,6-trinitrotoluene in ambient conditions. Journal of Electroanalytical Chemistry, 2021, 900, 115717.	3.8	7
121	Transparent Self-Ordered Niobium-Oxide Nanochannel Layers Formed on Conducting Glass by Total Anodization of Thin Metal Films in Glycerol/Phosphate Electrolyte. ECS Electrochemistry Letters, 2012, 2, C4-C6.	1.9	6
122	Signal Amplification Strategy Based on TiO ₂ â€Nanotube Layers and Nanobeads Carrying Quantum Dots for Electrochemiluminescent Immunosensors. ChemistryOpen, 2013, 2, 93-98.	1.9	6
123	Formation of aluminum oxide nanostructures via anodization of Al3104 alloy and their wettability behavior for self-cleaning application. Catalysis Today, 2021, 359, 50-56.	4.4	6
124	Sonochemically synthesized nanostructured ternary electrode material for coin-cell-type supercapacitor applications. FlatChem, 2021, 30, 100304.	5.6	6
125	Photoelectrochemical water oxidation in anodic TiO2 nanotubes array: Importance of mass transfer. Electrochemistry Communications, 2021, 132, 107133.	4.7	4
126	Interstitial M ⁺ (M ⁺ = Li ⁺ or Sn ⁴⁺) Doping at Interfacial BiVO ₄ /WO ₃ to Promote Photoelectrochemical Hydrogen Production. ACS Applied Energy Materials, 2021, 4, 13636-13645.	5.1	4

#	Article	IF	CITATIONS
127	Electrochemical characteristic assessments toward 2,4,6-trinitrotoluene using anodic TiO2 nanotube arrays. Electrochemistry Communications, 2022, 135, 107214.	4.7	4
128	Decoration of X2C nanoparticles on CdS nanostructures for highly efficient photocatalytic wastewater treatment under visible light. Applied Surface Science, 2022, 583, 152533.	6.1	4
129	Chemical-bath-deposited rutile TiO2 film for electrochemical detection of 2,4,6-trinitrotoluene. Thin Solid Films, 2022, 748, 139172.	1.8	4
130	Electrochemical Anodic Formation of VO2 Nanotubes and Hydrogen Sorption Property. Journal of Electrochemical Science and Technology, 2021, 12, 212-216.	2.2	3
131	Enhanced photoelectrochemical activity using NiCo2S4 / spaced TiO2 nanorod heterojunction. Ceramics International, 2021, , .	4.8	2
132	Understanding the Formation of Anodic Nanoporous TiO2Structures in a Hot Glycerol/Phosphate Electrolyte. Journal of the Electrochemical Society, 2017, 164, E5-E10.	2.9	1
133	Crystallization of Amorphous TiO2 Nanotubes: A Real-Time Synchrotron X-ray Scattering Study. Journal of Nanoscience and Nanotechnology, 2017, 17, 7824-7827.	0.9	1
134	Facile synthesis of zeolitic imidazolate frameworkâ€67/vanadiumâ€doped nickel hydroxide as active electrocatalyst for oxygen evolution reaction. International Journal of Energy Research, 0, , .	4.5	1
135	Phase Separated Microstructure and its Stability in InGaAs Epitaxial Layers Grown by LPE. Materials Research Society Symposia Proceedings, 1993, 326, 109.	0.1	Ο
136	Enhancement of Photoelectrochemical Properties through α-Fe2O3 Deposition on a Modified Fluorine-Doped Tin Oxide. ECS Meeting Abstracts, 2020, MA2020-02, 3666-3666.	0.0	0
137	Enhancement of Photogenerated Charge Transport By TiO2 Modification of WO3/BiVO4 Core-Shell Heterojunction. ECS Meeting Abstracts, 2020, MA2020-02, 3665-3665.	0.0	0
138	(Invited) Anodic TiO2 Nanostructures for Photoelectrochemical and Photocatalytic Applications. ECS Meeting Abstracts, 2020, MA2020-02, 3275-3275.	0.0	0