Daniel J St-Cyr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345649/publications.pdf

Version: 2024-02-01

DANIEL IST-CVP

#	Article	IF	CITATIONS
1	A New Use of Wittig-Type Reagents as 1,3-Dipolar Cycloaddition Precursors and in Pyrrole Synthesis. Journal of the American Chemical Society, 2007, 129, 12366-12367.	6.6	137
2	Direct Synthesis of Pyrroles from Imines, Alkynes, and Acid Chlorides:Â An Isocyanide-Mediated Reaction. Organic Letters, 2007, 9, 449-452.	2.4	95
3	E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nature Chemical Biology, 2014, 10, 156-163.	3.9	81
4	Direct, Palladium-Catalyzed, Multicomponent Synthesis of β-Lactams from Imines, Acid Chloride, and Carbon Monoxide. Organic Letters, 2006, 8, 3927-3930.	2.4	76
5	Hornerâ^'Wadsworthâ^'Emmons Reagents as Azomethine Ylide Analogues: Pyrrole Synthesis via (3 + 2) Cycloaddition. Organic Letters, 2010, 12, 4916-4919.	2.4	63
6	Modular Mesoionics: Understanding and Controlling Regioselectivity in 1,3-Dipolar Cycloadditions of Münchnone Derivatives. Journal of the American Chemical Society, 2013, 135, 17349-17358.	6.6	58
7	Phospha-Münchnones: Electronic Structures and 1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 2010, 75, 4261-4273.	1.7	41
8	Targeting the INCENP IN-box–Aurora B interaction to inhibit CPC activity <i>in vivo</i> . Open Biology, 2014, 4, 140163.	1.5	23
9	α-Amino-β-hydroxy-γ-lactam for Constraining Peptide Ser and Thr Residue Conformation. Organic Letters, 2010, 12, 1652-1655.	2.4	18
10	Identification and optimization of molecular glue compounds that inhibit a noncovalent E2 enzyme–ubiquitin complex. Science Advances, 2021, 7, eabi5797.	4.7	17
11	Aminolactam, N-Aminoimidazolone, and N-Aminoimdazolidinone Peptide Mimics. Topics in Heterocyclic Chemistry, 2017, , 125-175.	0.2	15
12	Probing Anti-inflammatory Properties Independent of NF-κB Through Conformational Constraint of Peptide-Based Interleukin-1 Receptor Biased Ligands. Frontiers in Chemistry, 2019, 7, 23.	1.8	15
13	Cyclic 1,3-Dipoles or Acyclic Phosphonium Ylides? Electronic Characterization of "MontreÌelonesâ€: Journal of the American Chemical Society, 2008, 130, 10052-10053.	6.6	14
14	Crystal-State Structure Analysis of β-Hydroxy-γ-lactam Constrained Ser/Thr Peptidomimetics. Heterocycles, 2010, 82, 729.	0.4	7
15	Panspecies Small-Molecule Disruptors of Heterochromatin-Mediated Transcriptional Gene Silencing. Molecular and Cellular Biology, 2015, 35, 662-674.	1.1	3
16	Headâ€ŧoâ€ŧail cyclization of side chainâ€protected linear peptides to recapitulate geneticallyâ€encoded cyclized peptides. Peptide Science, 2022, 114, .	1.0	3