G Eibes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345637/publications.pdf

Version: 2024-02-01

		186209	182361
59	2,686	28	51
papers	citations	h-index	g-index
60	60	60	3333
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science and Technology, 2017, 67, 220-235.	7.8	392
2	Laccase-catalyzed degradation of anti-inflammatories and estrogens. Biochemical Engineering Journal, 2010, 51, 124-131.	1.8	185
3	Maximizing the ex vivo expansion of human mesenchymal stem cells using a microcarrier-based stirred culture system. Journal of Biotechnology, 2010, 146, 194-197.	1.9	158
4	Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere, 2006, 64, 408-414.	4.2	154
5	Removal of Estrogenic Compounds from Filtered Secondary Wastewater Effluent in a Continuous Enzymatic Membrane Reactor. Identification of Biotransformation Products. Environmental Science & Environmental Science & Environmental Science & Environmental Science & Environmental Science	4.6	105
6	Oxidation of pharmaceutically active compounds by a ligninolytic fungal peroxidase. Biodegradation, 2011, 22, 539-550.	1.5	97
7	Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor. Biodegradation, 2012, 23, 373-386.	1.5	89
8	Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors. Journal of Hazardous Materials, 2012, 213-214, 175-183.	6.5	77
9	Valorisation of olive agro-industrial by-products as a source of bioactive compounds. Science of the Total Environment, 2018, 645, 533-542.	3.9	77
10	Optimization of solvent extraction of antioxidants from Eucalyptus globulus leaves by response surface methodology: Characterization and assessment of their bioactive properties. Industrial Crops and Products, 2017, 108, 649-659.	2.5	74
11	Hydrothermal treatment of chestnut shells (Castanea sativa) to produce oligosaccharides and antioxidant compounds. Carbohydrate Polymers, 2018, 192, 75-83.	5.1	72
12	Complete degradation of anthracene by Manganese Peroxidase in organic solvent mixtures. Enzyme and Microbial Technology, 2005, 37, 365-372.	1.6	61
13	Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Industrial Crops and Products, 2017, 107, 105-113.	2.5	61
14	Yerba mate waste: A sustainable resource of antioxidant compounds. Industrial Crops and Products, 2018, 113, 398-405.	2.5	61
15	Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products, 2018, 124, 582-592.	2.5	60
16	Immobilization of laccase by encapsulation in a solâ \in "gel matrix and its characterization and use for the removal of estrogens. Biotechnology Progress, 2011, 27, 1570-1579.	1.3	59
17	On the use of a high-redox potential laccase as an alternative for the transformation of non-steroidal anti-inflammatory drugs (NSAIDs). Journal of Molecular Catalysis B: Enzymatic, 2013, 97, 233-242.	1.8	52
18	Recyclable cross-linked laccase aggregates coupled to magnetic silica microbeads for elimination of pharmaceuticals from municipal wastewater. Environmental Science and Pollution Research, 2016, 23, 8929-8939.	2.7	49

#	Article	IF	Citations
19	Enzymatic technologies for remediation of hydrophobic organic pollutants in soil. Applied Microbiology and Biotechnology, 2015, 99, 8815-8829.	1.7	47
20	Improving the catalytic performance of laccase using a novel continuous-flow microreactor. Chemical Engineering Journal, 2013, 223, 497-506.	6.6	45
21	Assessing the use of nanoimmobilized laccases to remove micropollutants from wastewater. Environmental Science and Pollution Research, 2016, 23, 3217-3228.	2.7	45
22	Continuous operation of a fluidized bed reactor for the removal of estrogens by immobilized laccase on Eupergit supports. Journal of Biotechnology, 2012, 162, 404-406.	1.9	42
23	Green approaches for the extraction of antioxidants from eucalyptus leaves. Industrial Crops and Products, 2019, 138, 111473.	2.5	41
24	Continuous removal of endocrine disruptors by versatile peroxidase using a twoâ€stage system. Biotechnology Progress, 2015, 31, 908-916.	1.3	32
25	Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohydrate Polymers, 2017, 169, 149-156.	5.1	32
26	Ex Vivo Expansion of Human Mesenchymal Stem Cells on Microcarriers. Methods in Molecular Biology, 2011, 698, 189-198.	0.4	31
27	Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase. Chemosphere, 2007, 66, 1744-1751.	4.2	29
28	Potentiality of a ceramic membrane reactor for the laccase-catalyzed removal of bisphenol A from secondary effluents. Applied Microbiology and Biotechnology, 2015, 99, 9299-9308.	1.7	29
29	Fostering the action of versatile peroxidase as a highly efficient biocatalyst for the removal of endocrine disrupting compounds. New Biotechnology, 2016, 33, 187-195.	2.4	28
30	Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess and Biosystems Engineering, 2009, 32, 129-134.	1.7	26
31	Green sustainable process to revalorize purple corn cobs within a biorefinery frame: Co-production of bioactive extracts. Science of the Total Environment, 2020, 709, 136236.	3.9	26
32	Surfactant-assisted two phase partitioning bioreactors for laccase-catalyzed degradation of anthracene. Process Biochemistry, 2012, 47, 1115-1121.	1.8	24
33	Study of mass transfer and biocatalyst stability for the enzymatic degradation of anthracene in a two-phase partitioning bioreactor. Biochemical Engineering Journal, 2010, 51, 79-85.	1.8	23
34	Strategies for the design and operation of enzymatic reactors for the degradation of highly and poorly soluble recalcitrant compounds. Biocatalysis and Biotransformation, 2007, 25, 260-268.	1.1	22
35	Valorization of horse chestnut burs to produce simultaneously valuable compounds under a green integrated biorefinery approach. Science of the Total Environment, 2020, 730, 139143.	3.9	22
36	Vegetable oils as NAPLs in two phase partitioning bioreactors for the degradation of anthracene by laccase. Chemical Engineering Journal, 2014, 240, 281-289.	6.6	20

#	Article	IF	CITATIONS
37	Continuous Removal of Nonylphenol by Versatile Peroxidase in a Two-Stage Membrane Bioreactor. Applied Biochemistry and Biotechnology, 2015, 175, 3038-3047.	1.4	18
38	Valorization of Vine Shoots Based on the Autohydrolysis Fractionation Optimized by a Kinetic Approach. Industrial & Engineering Chemistry Research, 2017, 56, 14164-14171.	1.8	16
39	Enzymatic reactors for the removal of recalcitrant compounds in wastewater. Biocatalysis and Biotransformation, 2018, 36, 195-215.	1.1	15
40	Comprehensive investigation of the enzymatic oligomerization of esculin by laccase in ethanol : water mixtures. RSC Advances, 2017, 7, 38424-38433.	1.7	14
41	Formulation of Laccase Nanobiocatalysts Based on Ionic and Covalent Interactions for the Enhanced Oxidation of Phenolic Compounds. Applied Sciences (Switzerland), 2017, 7, 851.	1.3	14
42	Sequential reactors for the removal of endocrine disrupting chemicals by laccase immobilized onto fumed silica microparticles. Biocatalysis and Biotransformation, 2018, 36, 254-264.	1.1	14
43	3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromolecular Bioscience, 2022, 22, e2200110.	2.1	14
44	Biocatalytic generation of Mn(III)â€chelate as a chemical oxidant of different environmental contaminants. Biotechnology Progress, 2011, 27, 668-676.	1.3	12
45	Laccase Activity as an Essential Factor in the Oligomerization of Rutin. Catalysts, 2018, 8, 321.	1.6	12
46	Application of response surface methodology to study the removal of estrogens in a laccase-mediated continuous membrane reactor. Biocatalysis and Biotransformation, 2013, 31, 197-207.	1.1	11
47	Scaleâ€up and economic analysis of the production of ligninolytic enzymes from a sideâ€stream of the organosolv process. Journal of Chemical Technology and Biotechnology, 2018, 93, 3125-3134.	1.6	11
48	Integrated Biocatalytic Platform Based on Aqueous Biphasic Systems for the Sustainable Oligomerization of Rutin. ACS Sustainable Chemistry and Engineering, 2021, 9, 9941-9950.	3.2	11
49	Enzymatic degradation of low soluble compounds in monophasic water:solvent reactors. Kinetics and modeling of anthracene degradation by MnP. Biotechnology and Bioengineering, 2008, 100, 619-626.	1.7	10
50	Coupling extraction and enzyme catalysis for the removal of anthracene present in polluted soils. Biochemical Engineering Journal, 2015, 93, 289-293.	1.8	10
51	Altered Clostridia response in extractive ABE fermentation with solvents of different nature. Biochemical Engineering Journal, 2020, 154, 107455.	1.8	9
52	Development of a Superparamagnetic Laccase Nanobiocatalyst for the Enzymatic Biotransformation of Xenobiotics. Journal of Environmental Engineering, ASCE, 2018, 144, 04018007.	0.7	8
53	Simultaneous valorization and detoxification of the hemicellulose rich liquor from the organosolv fractionation. International Biodeterioration and Biodegradation, 2018, 126, 112-118.	1.9	7
54	Effect of copper and different carbon and nitrogen sources on the decolorization of an industrial dye mixture under solid-state fermentation. Journal of Cleaner Production, 2019, 237, 117713.	4.6	7

G EIBES

#	Article	IF	CITATION
55	A novel enzyme catalysis reactor based on superparamagnetic nanoparticles for biotechnological applications. Journal of Environmental Chemical Engineering, 2018, 6, 5950-5960.	3.3	6
56	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
57	Green and sustainable synthesis of oligorutin using an enzymatic membrane reactor: Process optimization. Food and Bioproducts Processing, 2020, 124, 434-444.	1.8	5
58	Lessons learned from the treatment of organosolv pulp with ligninolytic enzymes and chemical delignification agents. Cellulose, 2018, 25, 763-776.	2.4	4
59	Reactor Engineering. , 2010, , 245-290.		3