David Eisenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345583/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of protein models with three-dimensional profiles. Nature, 1992, 356, 83-85.	13.7	2,958
2	Atomic structures of amyloid cross- \hat{l}^2 spines reveal varied steric zippers. Nature, 2007, 447, 453-457.	13.7	2,066
3	Structure of the cross- \hat{l}^2 spine of amyloid-like fibrils. Nature, 2005, 435, 773-778.	13.7	2,034
4	The Database of Interacting Proteins: 2004 update. Nucleic Acids Research, 2004, 32, 449D-451.	6.5	1,918
5	Solvation energy in protein folding and binding. Nature, 1986, 319, 199-203.	13.7	1,867
6	[20] VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 1997, 277, 396-404.	0.4	1,839
7	Cell-free Formation of RNA Granules: Low Complexity Sequence Domains Form Dynamic Fibers within Hydrogels. Cell, 2012, 149, 753-767.	13.5	1,725
8	Detecting Protein Function and Protein-Protein Interactions from Genome Sequences. Science, 1999, 285, 751-753.	6.0	1,595
9	The Amyloid State of Proteins in Human Diseases. Cell, 2012, 148, 1188-1203.	13.5	1,496
10	DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Research, 2002, 30, 303-305.	6.5	1,487
11	The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature, 1982, 299, 371-374.	13.7	1,019
12	Functional Amyloids As Natural Storage of Peptide Hormones in Pituitary Secretory Granules. Science, 2009, 325, 328-332.	6.0	903
13	A combined algorithm for genome-wide prediction of protein function. Nature, 1999, 402, 83-86.	13.7	879
14	3D domain swapping: A mechanism for oligomer assembly. Protein Science, 1995, 4, 2455-2468.	3.1	742
15	The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biology, 2007, 5, e16.	2.6	736
16	Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3487-3492.	3.3	708
17	Protein function in the post-genomic era. Nature, 2000, 405, 823-826.	13.7	690
18	Toward the structural genomics of complexes: Crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8060-8065.	3.3	683

#	Article	IF	CITATIONS
19	The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12420-12425.	3.3	656
20	3D domain swapping: As domains continue to swap. Protein Science, 2002, 11, 1285-1299.	3.1	648
21	Protein Interactions. Molecular and Cellular Proteomics, 2002, 1, 349-356.	2.5	570
22	Structure of the toxic core of $\hat{I}\pm$ -synuclein from invisible crystals. Nature, 2015, 525, 486-490.	13.7	528
23	Atomic View of a Toxic Amyloid Small Oligomer. Science, 2012, 335, 1228-1231.	6.0	518
24	Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Science, 1992, 1, 227-235.	3.1	507
25	Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel. Nature Communications, 2018, 9, 3609.	5.8	468
26	Propagation of Tau Aggregates and Neurodegeneration. Annual Review of Neuroscience, 2017, 40, 189-210.	5.0	453
27	Structural Studies of Amyloid Proteins at the Molecular Level. Annual Review of Biochemistry, 2017, 86, 69-95.	5.0	419
28	Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2018, 25, 215-219.	1.4	417
29	Sequence-structure analysis of FAD-containing proteins. Protein Science, 2001, 10, 1712-1728.	3.1	412
30	Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature, 2011, 475, 96-100.	13.7	394
31	The activities of amyloids from a structural perspective. Nature, 2016, 539, 227-235.	13.7	386
32	A census of protein repeats. Journal of Molecular Biology, 1999, 293, 151-160.	2.0	385
33	Molecular basis for amyloid-β polymorphism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16938-16943.	3.3	383
34	Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science, 2018, 359, 698-701.	6.0	376
35	An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated Â-sheet structure for amyloid. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2375-2380.	3.3	375
36	The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4074-4078.	3.3	372

#	Article	lF	CITATIONS
37	Recent atomic models of amyloid fibril structure. Current Opinion in Structural Biology, 2006, 16, 260-265.	2.6	354
38	Crystal Structure of Human BPI and Two Bound Phospholipids at 2.4 Angstrom Resolution. Science, 1997, 276, 1861-1864.	6.0	352
39	Half a century of amyloids: past, present and future. Chemical Society Reviews, 2020, 49, 5473-5509.	18.7	345
40	Molecular basis for insulin fibril assembly. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18990-18995.	3.3	341
41	[9] Profile analysis. Methods in Enzymology, 1990, 183, 146-159.	0.4	337
42	Structure–function relationships of glutamine synthetases. BBA - Proteins and Proteomics, 2000, 1477, 122-145.	2.1	322
43	Novel subunit—subunit interactions in the structure of glutamine synthetase. Nature, 1986, 323, 304-309.	13.7	320
44	Atomic structure of the crossâ€Î² spine of islet amyloid polypeptide (amylin). Protein Science, 2008, 17, 1467-1474.	3.1	313
45	Protein fold recognition using sequenceâ€derived predictions. Protein Science, 1996, 5, 947-955.	3.1	299
46	Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7717-7722.	3.3	286
47	Prolinks: a database of protein functional linkages derived from coevolution. Genome Biology, 2004, 5, R35.	13.9	276
48	A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell, 2016, 29, 90-103.	7.7	273
49	Amyloid nomenclature 2020: update and recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2020, 27, 217-222.	1.4	265
50	Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Science, 2010, 19, 1031-1043.	3.1	264
51	Molecular mechanisms for protein-encoded inheritance. Nature Structural and Molecular Biology, 2009, 16, 973-978.	3.6	250
52	Toward rational protein crystallization: A Web server for the design of crystallizable protein variants. Protein Science, 2007, 16, 1569-1576.	3.1	247
53	Structure-based inhibitors of tau aggregation. Nature Chemistry, 2018, 10, 170-176.	6.6	246
54	A domain-swapped RNase A dimer with implications for amyloid formation. Nature Structural Biology, 2001, 8, 211-214.	9.7	240

#	Article	IF	CITATIONS
55	Amyloid-like fibrils of ribonuclease A with three-dimensional domain-swapped and native-like structure. Nature, 2005, 437, 266-269.	13.7	239
56	Unique Transcriptome Signature of Mycobacterium tuberculosis in Pulmonary Tuberculosis. Infection and Immunity, 2006, 74, 1233-1242.	1.0	234
57	The discovery of the Â-helix and Â-sheet, the principal structural features of proteins. Proceedings of the United States of America, 2003, 100, 11207-11210.	3.3	228
58	Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins11Edited by J. Thornton. Journal of Molecular Biology, 2001, 307, 1487-1502.	2.0	226
59	An amyloid-forming segment of Â2-microglobulin suggests a molecular model for the fibril. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10584-10589.	3.3	220
60	Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nature Chemistry, 2012, 4, 927-933.	6.6	213
61	Cryo-EM structures of four polymorphic TDP-43 amyloid cores. Nature Structural and Molecular Biology, 2019, 26, 619-627.	3.6	205
62	Deposition Diseases and 3D Domain Swapping. Structure, 2006, 14, 811-824.	1.6	195
63	Refined structure of monomelic diphtheria toxin at 2.3 Ã resolution. Protein Science, 1994, 3, 1464-1475.	3.1	192
64	Bacterial Inclusion Bodies Contain Amyloid-Like Structure. PLoS Biology, 2008, 6, e195.	2.6	189
65	Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Science, 2009, 18, 1521-1530.	3.1	186
66	Towards a Pharmacophore for Amyloid. PLoS Biology, 2011, 9, e1001080.	2.6	184
67	Out-of-register Î ² -sheets suggest a pathway to toxic amyloid aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20913-20918.	3.3	184
68	Structural Models of Amyloid‣ike Fibrils. Advances in Protein Chemistry, 2006, 73, 235-282.	4.4	183
69	Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation. Nature Structural and Molecular Biology, 2018, 25, 463-471.	3.6	183
70	Refined structure of dimeric diphtheria toxin at 2.0 Ã resolution. Protein Science, 1994, 3, 1444-1463.	3.1	181
71	A missing link in cupredoxins: Crystal structure of cucumber stellacyanin at 1.6 Ã resolution. Protein Science, 1996, 5, 2175-2183.	3.1	181
72	The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1562-70.	3.3	181

#	Article	IF	CITATIONS
73	Inference of Protein Function from Protein Structure. Structure, 2005, 13, 121-130.	1.6	175
74	The Structural Biology of Protein Aggregation Diseases:  Fundamental Questions and Some Answers. Accounts of Chemical Research, 2006, 39, 568-575.	7.6	173
75	GXXXG and CXXXA Motifs Stabilize FAD and NAD(P)-binding Rossmann Folds Through Cα–Hâ‹⁻O Hydrogen Bonds and van der Waals Interactions. Journal of Molecular Biology, 2002, 323, 69-76.	2.0	168
76	Genomic evidence that the intracellular proteins of archaeal microbes contain disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 9679-9684.	3.3	167
77	The expanding amyloid family: Structure, stability, function, and pathogenesis. Cell, 2021, 184, 4857-4873.	13.5	166
78	TDP-43 and RNA form amyloid-like myo-granules in regenerating muscle. Nature, 2018, 563, 508-513.	13.7	163
79	Defensins promote fusion and lysis of negatively charged membranes. Protein Science, 1993, 2, 1301-1312.	3.1	160
80	Secondary structure-based profiles: Use of structure-conserving scoring tables in searching protein sequence databases for structural similarities. Proteins: Structure, Function and Bioinformatics, 1991, 10, 229-239.	1.5	159
81	A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. Journal of Molecular Biology, 1997, 267, 1026-1038.	2.0	159
82	The Crystal Structure of Phosphinothricin in the Active Site of Glutamine Synthetase Illuminates the Mechanism of Enzymatic Inhibition. Biochemistry, 2001, 40, 1903-1912.	1.2	158
83	Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nature Methods, 2017, 14, 399-402.	9.0	158
84	Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nature Catalysis, 2019, 2, 977-985.	16.1	142
85	Seeded conversion of recombinant prion protein to a disulfide-bonded oligomer by a reduction-oxidation process. Nature Structural and Molecular Biology, 2003, 10, 725-730.	3.6	140
86	Use of Logic Relationships to Decipher Protein Network Organization. Science, 2004, 306, 2246-2249.	6.0	140
87	The crystal structure of the designed trimeric coiled coil coilâ€V <i>_a</i> L <i>_d</i> : Implications for engineering crystals and supramolecular assemblies. Protein Science, 1997, 6, 80-88.	3.1	138
88	The design, synthesis, and crystallization of an alpha-helical peptide. Proteins: Structure, Function and Bioinformatics, 1986, 1, 16-22.	1.5	137
89	Computational methods of analysis of protein–protein interactions. Current Opinion in Structural Biology, 2003, 13, 377-382.	2.6	136
90	Inferring protein domain interactions from databases of interacting proteins. Genome Biology, 2005, 6, R89.	13.9	128

#	Article	IF	CITATIONS
91	Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes. Biochemistry, 1994, 33, 675-681.	1.2	127
92	Cooperative hydrogen bonding in amyloid formation. Protein Science, 2007, 16, 761-764.	3.1	127
93	Structures of fibrils formed by α-synuclein hereditary disease mutant H50Q reveal new polymorphs. Nature Structural and Molecular Biology, 2019, 26, 1044-1052.	3.6	127
94	The BPI/LBP family of proteins: A structural analysis of conserved regions. Protein Science, 1998, 7, 906-914.	3.1	125
95	A systematic screen of beta2-microglobulin and insulin for amyloid-like segments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4079-4082.	3.3	125
96	Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 2001, 29, 295-300.	9.4	122
97	Aggregation-triggering segments of SOD1 fibril formation support a common pathway for familial and sporadic ALS. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 197-201.	3.3	122
98	The α-synuclein hereditary mutation E46K unlocks a more stable, pathogenic fibril structure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3592-3602.	3.3	122
99	Structure and Proposed Activity of a Member of the VapBC Family of Toxin-Antitoxin Systems. Journal of Biological Chemistry, 2009, 284, 276-283.	1.6	118
100	Uncovering the Mechanism of Aggregation of Human Transthyretin. Journal of Biological Chemistry, 2015, 290, 28932-28943.	1.6	117
101	An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kda major secretory protein (antigen 85B), a mycolyl transferase11Edited by I. A. Wilson. Journal of Molecular Biology, 2001, 307, 671-681.	2.0	115
102	Macrocyclic β-Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide. Journal of the American Chemical Society, 2011, 133, 3144-3157.	6.6	114
103	The most highly amphiphilic ?-helices include two amino acid segments in human immunodeficiency virus glycoprotein 41. Biopolymers, 1990, 29, 171-177.	1.2	112
104	Protein crystal structure obtained at 2.9 Ã resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12769-12774.	3.3	111
105	Discovery of the ammonium substrate site on glutamine synthetase, A third cation binding site. Protein Science, 1995, 4, 2358-2365.	3.1	108
106	Structures of the two 3D domain-swapped RNase A trimers. Protein Science, 2009, 11, 371-380.	3.1	107
107	Ketones block amyloid entry and improve cognition in an Alzheimer's model. Neurobiology of Aging, 2016, 39, 25-37.	1.5	107
108	β2-microglobulin forms three-dimensional domain-swapped amyloid fibrils with disulfide linkages. Nature Structural and Molecular Biology, 2011, 18, 49-55.	3.6	105

#	Article	IF	CITATIONS
109	Atomic structure of a toxic, oligomeric segment of SOD1 linked to amyotrophic lateral sclerosis (ALS). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8770-8775.	3.3	104
110	Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach. Genome Biology, 2003, 4, R59.	13.9	103
111	Cross-beta Order and Diversity in Nanocrystals of an Amyloid-forming Peptide. Journal of Molecular Biology, 2003, 330, 1165-1175.	2.0	102
112	Structure-Based Design of Functional Amyloid Materials. Journal of the American Chemical Society, 2014, 136, 18044-18051.	6.6	102
113	Assigning amino acid sequences to 3â€dimensional protein folds. FASEB Journal, 1996, 10, 126-136.	0.2	101
114	Subunit asymmetry in the threeâ€dimensional structure of a human CuZnSOD mutant found in familial amyotrophic lateral sclerosis. Protein Science, 1998, 7, 545-555.	3.1	101
115	The crystal structure of a heptameric archaeal Sm protein: Implications for the eukaryotic snRNP core. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5532-5537.	3.3	100
116	Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Engineering, Design and Selection, 2009, 22, 531-536.	1.0	99
117	De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure. Nature, 2016, 539, 43-47.	13.7	98
118	Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nature Structural and Molecular Biology, 2020, 27, 653-659.	3.6	98
119	The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis, 2003, 83, 223-249.	0.8	95
120	Ab initio structure determination from prion nanocrystals at atomic resolution by MicroED. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11232-11236.	3.3	95
121	Atomic structures of fibrillar segments of hIAPP suggest tightly mated \hat{I}^2 -sheets are important for cytotoxicity. ELife, 2017, 6, .	2.8	95
122	Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. ELife, 2013, 2, e00857.	2.8	94
123	Designed amyloid fibers as materials for selective carbon dioxide capture. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 191-196.	3.3	93
124	Sliding-layer conformational change limited by the quaternary structure of plant RuBisCO. Nature, 1987, 329, 354-356.	13.7	91
125	Amyloid β-Protein C-Terminal Fragments: Formation of Cylindrins and β-Barrels. Journal of the American Chemical Society, 2016, 138, 549-557.	6.6	91
126	Protein interaction databases. Current Opinion in Biotechnology, 2001, 12, 334-339.	3.3	89

#	Article	IF	CITATIONS
127	Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Nature Structural and Molecular Biology, 2018, 25, 311-319.	3.6	89
128	Runaway domain swapping in amyloid-like fibrils of T7 endonuclease I. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8042-8047.	3.3	88
129	Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation. Molecular Cell, 2015, 57, 1011-1021.	4.5	88
130	Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nature Structural and Molecular Biology, 2018, 25, 131-134.	3.6	87
131	Amyloid fibrils in FTLD-TDP are composed of TMEM106B and not TDP-43. Nature, 2022, 605, 304-309.	13.7	85
132	Characteristics of Amyloid-Related Oligomers Revealed by Crystal Structures of Macrocyclic β-Sheet Mimics. Journal of the American Chemical Society, 2011, 133, 6736-6744.	6.6	84
133	Crystal structures of a pantothenate synthetase fromM. tuberculosisand its complexes with substrates and a reaction intermediate. Protein Science, 2003, 12, 1097-1108.	3.1	83
134	Multicopy Crystallographic Refinement of a Relaxed Glutamine Synthetase fromMycobacterium tuberculosisHighlights Flexible Loops in the Enzymatic Mechanism and Its Regulationâ€. Biochemistry, 2002, 41, 9863-9872.	1.2	82
135	CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nature Communications, 2020, 11, 4090.	5.8	81
136	Structure-based inhibitors of amyloid beta core suggest a common interface with tau. ELife, 2019, 8, .	2.8	81
137	Thermodynamics of melittin tetramerization determined by circular dichroism and implications for protein folding. Protein Science, 1992, 1, 641-653.	3.1	75
138	Hydrophobicity and amphiphilicity in protein structure. Journal of Cellular Biochemistry, 1986, 31, 11-17.	1.2	73
139	Inverted protein structure prediction. Current Opinion in Structural Biology, 1993, 3, 437-444.	2.6	73
140	Cryo-EM structure of a human prion fibril with a hydrophobic, protease-resistant core. Nature Structural and Molecular Biology, 2020, 27, 417-423.	3.6	73
141	The TB Structural Genomics Consortium: Providing a Structural Foundation for Drug Discovery. Current Drug Targets Infectious Disorders, 2002, 2, 121-141.	2.1	66
142	Amyloid seeding of transthyretin by ex vivo cardiac fibrils and its inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6741-E6750.	3.3	66
143	Local moves: An efficient algorithm for simulation of protein folding. Proteins: Structure, Function and Bioinformatics, 1995, 23, 73-82.	1.5	64
144	Mycobacterium tuberculosis gene expression profiling within the context of protein networks. Microbes and Infection, 2006, 8, 747-757.	1.0	64

#	Article	IF	CITATIONS
145	Crystal structure of activated tobacco rubisco complexed with the reactionâ€intermediate analogue 2â€carboxyâ€arabinitol 1, 5â€bisphosphate. Protein Science, 1993, 2, 1136-1146.	3.1	61
146	A Novel Inhibitor of Mycobacterium tuberculosis Pantothenate Synthetase. Journal of Biomolecular Screening, 2007, 12, 100-105.	2.6	61
147	Crystal Structures of IAPP Amyloidogenic Segments Reveal a Novel Packing Motif of Out-of-Register Beta Sheets. Journal of Physical Chemistry B, 2016, 120, 5810-5816.	1.2	61
148	Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease. Journal of Biological Chemistry, 2010, 285, 29671-29675.	1.6	58
149	Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation. Frontiers in Molecular Neuroscience, 2019, 12, 54.	1.4	58
150	Visualization and interpretation of protein networks in Mycobacterium tuberculosis based on hierarchical clustering of genome-wide functional linkage maps. Nucleic Acids Research, 2003, 31, 7099-7109.	6.5	55
151	A model for oxidative modification of glutamine synthetase, based on crystal structures of mutant H269N and the oxidized enzyme. Biochemistry, 1993, 32, 7999-8003.	1.2	54
152	Unusual conformation of nicotinamide adenine dinucleotide (NAD) bound to diphtheria toxin: A comparison with NAD bound to the oxidoreductase enzymes. Protein Science, 1997, 6, 2084-2096.	3.1	54
153	The crystal structure of the Rv0301â€Rv0300 VapBCâ€3 toxin—antitoxin complex from <i>M. tuberculosis</i> reveals a Mg ²⁺ ion in the active site and a putative RNAâ€binding site. Protein Science, 2012, 21, 1754-1767.	3.1	54
154	Inhibition of synucleinopathic seeding by rationally designed inhibitors. ELife, 2020, 9, .	2.8	54
155	Atomic Structures Suggest Determinants of Transmission Barriers in Mammalian Prion Disease. Biochemistry, 2011, 50, 2456-2463.	1.2	53
156	The formation, function and regulation of amyloids: insights from structural biology. Journal of Internal Medicine, 2016, 280, 164-176.	2.7	53
157	Predicting structures for genome proteins. Current Opinion in Structural Biology, 1999, 9, 208-211.	2.6	52
158	Structure-based inhibitors halt prion-like seeding by Alzheimer's disease–and tauopathy–derived brain tissue samples. Journal of Biological Chemistry, 2019, 294, 16451-16464.	1.6	51
159	The 1.7 Ã crystal structure of BPI: a study of how two dissimilar amino acid sequences can adopt the same fold 1 1Edited by D. Rees. Journal of Molecular Biology, 2000, 299, 1019-1034.	2.0	50
160	Crystal Structure of the Pantothenate Synthetase fromMycobacterium tuberculosis, Snapshots of the Enzyme in Actionâ€,‡. Biochemistry, 2006, 45, 1554-1561.	1.2	50
161	Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. Journal of Biological Chemistry, 2018, 293, 2888-2902.	1.6	50
162	Structure and assembly of an augmented Sm-like archaeal protein 14-mer. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4539-4544.	3.3	49

#	Article	IF	CITATIONS
163	The Evolving Role of 3D Domain Swapping in Proteins. Structure, 2004, 12, 1339-1341.	1.6	49
164	Cryo-EM structures of hIAPP fibrils seeded by patient-extracted fibrils reveal new polymorphs and conserved fibril cores. Nature Structural and Molecular Biology, 2021, 28, 724-730.	3.6	48
165	Inhibition by small-molecule ligands of formation of amyloid fibrils of an immunoglobulin light chain variable domain. ELife, 2015, 4, e10935.	2.8	48
166	Interactions of Nucleotides with Fully Unadenylylated Glutamine Synthetase from Salmonella typhimurium. Biochemistry, 1994, 33, 11184-11188.	1.2	47
167	The three-dimensional structure of human bactericidal/permeability-increasing protein. Biochemical Pharmacology, 1999, 57, 225-229.	2.0	47
168	The oligomerization and ligand-binding properties of Sm-like archaeal proteins (SmAPs). Protein Science, 2003, 12, 832-847.	3.1	47
169	Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nature Chemistry, 2018, 10, 1213-1221.	6.6	46
170	Structure of amyloid-β (20-34) with Alzheimer's-associated isomerization at Asp23 reveals a distinct protofilament interface. Nature Communications, 2019, 10, 3357.	5.8	45
171	Intrinsic electronic conductivity of individual atomically resolved amyloid crystals reveals micrometer-long hole hopping via tyrosines. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	45
172	A molecular model for membrane fusion based on solution studies of an amphiphilic peptide from HIV gp41. Protein Science, 1992, 1, 1454-1464.	3.1	43
173	Centrosymmetric bilayers in the 0.75 Ã¥ resolution structure of a designed alphaâ€helical peptide, D, Lâ€Alphaâ€1. Protein Science, 1999, 8, 1410-1422.	3.1	43
174	Draft Crystal Structure of the Vault Shell at 9-Ã Resolution. PLoS Biology, 2007, 5, e318.	2.6	43
175	A study of combined structure/sequence profiles. Folding & Design, 1996, 1, 451-461.	4.5	42
176	Detecting distant relatives of mammalian LPSâ€binding and lipid transport proteins. Protein Science, 1998, 7, 1643-1646.	3.1	40
177	Regulation by Oligomerization in a Mycobacterial Folate Biosynthetic Enzyme. Journal of Molecular Biology, 2005, 349, 61-72.	2.0	39
178	X-ray Crystallographic Structure of an Artificial β-Sheet Dimer. Journal of the American Chemical Society, 2010, 132, 11622-11628.	6.6	39
179	The TB Structural Genomics Consortium: A decade of progress. Tuberculosis, 2011, 91, 155-172.	0.8	39
180	The threeâ€dimensional profile method using residue preference as a continuous function of residue environment. Protein Science, 1994, 3, 687-695.	3.1	38

#	Article	IF	CITATIONS
181	Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119952119.	3.3	38
182	Identifying Cognate Binding Pairs among a Large Set of Paralogs: The Case of PE/PPE Proteins of Mycobacterium tuberculosis. PLoS Computational Biology, 2008, 4, e1000174.	1.5	37
183	Crystal structure of a major secreted protein of Mycobacterium tuberculosis-MPT63 at 1.5-Ã resolution. Protein Science, 2009, 11, 2887-2893.	3.1	37
184	Formation of Amyloid Fibers by Monomeric Light Chain Variable Domains. Journal of Biological Chemistry, 2014, 289, 27513-27525.	1.6	37
185	A Proposed Mechanism for the Promotion of Prion Conversion Involving a Strictly Conserved Tyrosine Residue in the β2-α2 Loop of PrPC. Journal of Biological Chemistry, 2014, 289, 10660-10667.	1.6	37
186	Describing Biological Protein Interactions in Terms of Protein States and State Transitions. Molecular and Cellular Proteomics, 2002, 1, 104-116.	2.5	35
187	Taking the measure of MicroED. Current Opinion in Structural Biology, 2017, 46, 79-86.	2.6	35
188	Packed protein bilayers in the 0.90 å resolution structure of a designed alpha helical bundle. Protein Science, 1999, 8, 1400-1409.	3.1	34
189	Utilizing logical relationships in genomic data to decipher cellular processes. FEBS Journal, 2005, 272, 5110-5118.	2.2	33
190	A pair of peptides inhibits seeding of the hormone transporter transthyretin into amyloid fibrils. Journal of Biological Chemistry, 2019, 294, 6130-6141.	1.6	33
191	A Hierarchic Approach to the Design of Hexameric Helical Barrels. Journal of Molecular Biology, 2002, 319, 243-253.	2.0	32
192	Structures of segments of αâ€synuclein fused to maltoseâ€binding protein suggest intermediate states during amyloid formation. Protein Science, 2011, 20, 996-1004.	3.1	32
193	Prevalence and species distribution of the low-complexity, amyloid-like, reversible, kinked segment structural motif in amyloid-like fibrils. Journal of Biological Chemistry, 2021, 297, 101194.	1.6	32
194	Detection of parallel functional modules by comparative analysis of genome sequences. Nature Biotechnology, 2005, 23, 253-260.	9.4	30
195	The directional atomic solvation energy: An atom-based potential for the assignment of protein sequences to known folds. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16041-16046.	3.3	29
196	Structure and Function of an Archaeal Homolog of Survival Protein E (SurEα): An Acid Phosphatase with Purine Nucleotide Specificity. Journal of Molecular Biology, 2003, 326, 1559-1575.	2.0	28
197	Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis. Journal of Biological Chemistry, 2018, 293, 19659-19671.	1.6	28
198	The crystal structure of the <i>mycobacterium tuberculosis</i> Rv3019câ€Rv3020c ESX complex reveals a domainâ€swapped heterotetramer. Protein Science, 2010, 19, 1692-1703.	3.1	27

#	Article	IF	CITATIONS
199	Comparative Proteomics Identifies the Cell-Associated Lethality of M.Âtuberculosis RelBE-like Toxin-Antitoxin Complexes. Structure, 2013, 21, 627-637.	1.6	27
200	Implications for Alzheimer's disease of an atomic resolution structure of amyloid-β(1–42) fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9398-9400.	3.3	27
201	Structures of EccB1 and EccD1 from the core complex of the mycobacterial ESX-1 type VII secretion system. BMC Structural Biology, 2016, 16, 5.	2.3	27
202	Factors That Drive Peptide Assembly from Native to Amyloid Structures: Experimental and Theoretical Analysis of [Leu-5]-Enkephalin Mutants. Journal of Physical Chemistry B, 2014, 118, 7247-7256.	1.2	26
203	Crystallization of a designed peptide from a molten globule ensemble. Folding & Design, 1996, 1, 57-64.	4.5	25
204	Crystal structure of the unactivated ribulose 1, 5â€bisphosphate carboxylase/oxygenase complexed with a transition state analog, 2â€carboxyâ€Dâ€arabinitol 1, 5â€bisphosphate. Protein Science, 1994, 3, 64-69.	3.1	24
205	Ribonuclease A suggests how proteins selfâ€chaperone against amyloid fiber formation. Protein Science, 2012, 21, 26-37.	3.1	24
206	Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nature Communications, 2019, 10, 5256.	5.8	24
207	Characterization of High-Order Diphtheria Toxin Oligomersâ€. Biochemistry, 2000, 39, 15901-15909.	1.2	23
208	Asparagine and glutamine ladders promote cross-species prion conversion. Journal of Biological Chemistry, 2017, 292, 19076-19086.	1.6	23
209	Perspective on SOD1 mediated toxicity in Amyotrophic Lateral Sclerosis. Postepy Biochemii, 2016, 62, 362-369.	0.5	22
210	3D Structure and Significance of the Gî¦XXG Helix Packing Motif in Tetramers of the E1β Subunit of Pyruvate Dehydrogenase from the ArcheonPyrobaculum aerophilumâ€,‡. Biochemistry, 2001, 40, 14484-14492.	1.2	21
211	Heterologous Expression of Mycobacterial Esx Complexes in Escherichia coli for Structural Studies Is Facilitated by the Use of Maltose Binding Protein Fusions. PLoS ONE, 2013, 8, e81753.	1.1	21
212	Toward the Atomic Structure of PrP ^{Sc} . Cold Spring Harbor Perspectives in Biology, 2017, 9, a031336.	2.3	21
213	Atomic structures of corkscrewâ€forming segments of SOD1 reveal varied oligomer conformations. Protein Science, 2018, 27, 1231-1242.	3.1	21
214	Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer's disease. Journal of Biological Chemistry, 2020, 295, 10662-10676.	1.6	21
215	The structure of a fibrilâ€ f orming sequence, NNQQNY, in the context of a globular fold. Protein Science, 2008, 17, 1617-1623.	3.1	20
216	Crystal structures of amyloidogenic segments of human transthyretin. Protein Science, 2018, 27, 1295-1303.	3.1	20

#	Article	IF	CITATIONS
217	Fold assignments for amino acid sequences of the CASP2 experiment. Proteins: Structure, Function and Bioinformatics, 1997, 29, 113-122.	1.5	19
218	Turning a reference inside-out: Commentary on an article by Stevens and Arkin entitled: ?Are membrane proteins ?inside-out? proteins?? (Proteins 1999;36:135-143). Proteins: Structure, Function and Bioinformatics, 2000, 38, 121-122.	1.5	18
219	Indexing amyloid peptide diffraction from serial femtosecond crystallography: new algorithms for sparse patterns. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 357-366.	2.5	18
220	Max Perutz's achievements: How did he do it?. Protein Science, 1994, 3, 1625-1628.	3.1	16
221	Taming tangled tau. Nature, 2017, 547, 170-171.	13.7	16
222	The protein network as a tool for finding novel drug targets. , 2007, 64, 191-215.		14
223	Annotating proteins with generalized functional linkages. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17700-17705.	3.3	14
224	Extended Î ² -Strands Contribute to Reversible Amyloid Formation. ACS Nano, 2022, 16, 2154-2163.	7.3	14
225	Salvage or Recovery of Failed Targets by Mutagenesis to Reduce Surface Entropy. Methods in Molecular Biology, 2014, 1140, 201-209.	0.4	13
226	Flowâ€aligned, singleâ€shot fiber diffraction using a femtosecond Xâ€ray freeâ€electron laser. Cytoskeleton, 2017, 74, 472-481.	1.0	12
227	Xâ€ray grade crystals of a designed <i>α</i> â€helical coiled coil. Protein Science, 1992, 1, 956-957.	3.1	11
228	Assessment of the effects of transthyretin peptide inhibitors in Drosophila models of neuropathic ATTR. Neurobiology of Disease, 2018, 120, 118-125.	2.1	11
229	Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nature Structural and Molecular Biology, 2022, 29, 529-536.	3.6	11
230	Bioinformatic challenges for the next decade(s). Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 525-527.	1.8	10
231	DPANN: Improved sequence to structure alignments following fold recognition. Proteins: Structure, Function and Bioinformatics, 2004, 56, 528-538.	1.5	9
232	Extending the diffraction limit of protein crystals: The example of glutamine synthetase from <i>Salmonella typhimurium</i> in the presence of its cofactor ATP. Protein Science, 1993, 2, 470-471.	3.1	8
233	Atomic view of an amyloid dodecamer exhibiting selective cellular toxic vulnerability in acute brain slices. Protein Science, 2021, , .	3.1	8
234	The Mechanism of the Amyloidogenic Conversion of T7 Endonuclease I. Journal of Biological Chemistry, 2007, 282, 14968-14974.	1.6	7

#	Article	IF	CITATIONS
235	Distal amyloid βâ€protein fragments template amyloid assembly. Protein Science, 2018, 27, 1181-1190.	3.1	7
236	Motifâ€based fold assignment. Protein Science, 2001, 10, 2460-2469.	3.1	6
237	Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers. Methods in Molecular Biology, 2016, 1345, 201-210.	0.4	6
238	Ultrafast Time-Resolved Studies on Fluorescein for Recognition Strands Architecture in Amyloid Fibrils. Journal of Physical Chemistry B, 2018, 122, 8-18.	1.2	6
239	Preliminary crystallographic studies on glutamine synthetase from Mycobacterium tuberculosis. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 865-868.	2.5	5
240	Inferring molecular function: contributions from functional linkages. Trends in Genetics, 2008, 24, 587-590.	2.9	5
241	Atomic insights into the genesis of cellular filaments by globular proteins. Nature Structural and Molecular Biology, 2018, 25, 705-714.	3.6	5
242	Crystallization of the chaperone protein SecB. Protein Science, 1995, 4, 1651-1653.	3.1	4
243	Bioinformatic identification of previously unrecognized amyloidogenic proteins. Journal of Biological Chemistry, 2022, 298, 101920.	1.6	4
244	A web-based comparative genomics tutorial for investigating microbial genomes. Journal of Microbiology and Biology Education, 2004, 5, 30-5.	0.2	3
245	Targeting Aggregation of Wilde-Type p53 and Mutant p53 with ReACp53 As a Novel Therapeutic Concept for AML. Blood, 2016, 128, 3944-3944.	0.6	2
246	A Web-Based Comparative Genomics Tutorial for Investigating Microbial Genomes. Journal of Microbiology and Biology Education, 2004, 5, 30-35.	0.2	1
247	PFIT and PFRIT: Bioinformatic algorithms for detecting glycosidase function from structure and sequence. Protein Science, 2004, 13, 221-229.	3.1	1
248	The Amyloid State of Proteins. FASEB Journal, 2015, 29, 218.1.	0.2	1
249	John T. Edsall as tutor and teacher. Biophysical Chemistry, 2002, 100, 91-93.	1.5	0
250	Phylogenetic profiling. , 2005, , .		0
251	In memoriam—Rainer Jaenicke. Protein Science, 2017, 26, 394-395.	3.1	0
252	Paul D. Boyer (1918–2018). Science, 2018, 361, 334-334.	6.0	0

#	Article	IF	CITATIONS
253	The Curies' Nobel Prizes. Science, 1982, 215, 348-348.	6.0	0
254	Targeting Misfolded p53 and p53 Aggregation to Overcome Resistance to Apoptosis in Acute Myeloid Leukemia. Blood, 2019, 134, 3786-3786.	0.6	0