
Chunlin Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8345169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Tough and Self-Powered Hydrogel for Artificial Skin. Chemistry of Materials, 2019, 31, 9850-9860.	6.7	151
2	Exosomes‣oaded Electroconductive Hydrogel Synergistically Promotes Tissue Repair after Spinal Cord Injury via Immunoregulation and Enhancement of Myelinated Axon Growth. Advanced Science, 2022, 9, e2105586.	11.2	117
3	Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceramics International, 2017, 43, 16141-16148.	4.8	66
4	Effects of strontium substitution on the phase transformation and crystal structure of calcium phosphate derived by chemical precipitation. Ceramics International, 2016, 42, 11918-11923.	4.8	51
5	A novel Fe(OH)3/g-C3N4 composite membrane for high efficiency water purification. Journal of Membrane Science, 2018, 564, 372-381.	8.2	41
6	Synthesis and structure properties of Se and Sr co-doped hydroxyapatite and their biocompatibility. Journal of Materials Science, 2019, 54, 2514-2525.	3.7	32
7	The effect of silicon doping on the transformation of amorphous calcium phosphate to silicon-substituted α-tricalcium phosphate by heat treatment. Ceramics International, 2016, 42, 883-890.	4.8	24
8	Effect of Hydroxyapatite Coating Surface Morphology on Adsorption Behavior of Differently Charged Proteins. Journal of Bionic Engineering, 2020, 17, 345-356.	5.0	20
9	Effect of silicon content on the surface morphology of silicon-substituted hydroxyapatite bio-ceramics treated by a hydrothermal vapor method. Ceramics International, 2014, 40, 14661-14667.	4.8	17
10	Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. Materials Science and Engineering C, 2018, 83, 67-77.	7.3	14
11	In vitro study of calcium phosphate layers on hydroxyapatite ceramics surface mineralized in different solutions. Ceramics International, 2016, 42, 1660-1665.	4.8	12
12	Preparation of a beta-tricalcium phosphate nanocoating and its protein adsorption behaviour by quartz crystal microbalance with dissipation technique. Colloids and Surfaces B: Biointerfaces, 2018, 162, 1-7.	5.0	11
13	Anchoring TGF-β1 on biomaterial surface via affinitive interactions: Effects on spatial structures and bioactivity. Colloids and Surfaces B: Biointerfaces, 2018, 166, 254-261.	5.0	10
14	Synthesis of hydroxyapatite nanoparticles using surface carboxyl-functionalized carbon dots as template. Ceramics International, 2018, 44, 16844-16850.	4.8	8
15	Effects of mono- and di-valent metal cations on the morphology of lipid vesicles. Chemistry and Physics of Lipids, 2018, 217, 19-28.	3.2	6
16	Competitive adsorption of bovine serum albumin and lysozyme on a beta-tricalcium phosphate nanocoating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123860.	4.7	6
17	An in situ study of the deposition of a calcium phosphate mineralized layer on a silicon-substituted hydroxyapatite sensor modulated by bovine serum albumin using QCM-D technology. Ceramics International, 2016, 42, 18648-18656.	4.8	5
18	Influence of HIP Treatment on Mechanical Properties of Ti6Al4V Scaffolds Prepared by L-PBF Process. Metals, 2019, 9, 1267.	2.3	5

#	Article	IF	CITATIONS
19	Blocking of matrix metalloproteinases-13 responsive peptide in poly(urethane urea) for potential cartilage tissue engineering applications. Journal of Biomaterials Applications, 2018, 32, 999-1010.	2.4	4