
Sascha Rutz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8344898/publications.pdf Version: 2024-02-01

SASCHA RUTZ

#	Article	IF	CITATIONS
1	Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nature Immunology, 2022, 23, 568-580.	7.0	18
2	High-efficiency nonviral CRISPR/Cas9-mediated gene editing of human T cells using plasmid donor DNA. Journal of Experimental Medicine, 2022, 219, .	4.2	30
3	PD-L1 expression by dendritic cells is a key regulator of T-cell immunity in cancer. Nature Cancer, 2020, 1, 681-691.	5.7	240
4	Functions and regulation of T cell-derived interleukin-10. Seminars in Immunology, 2019, 44, 101344.	2.7	110
5	Coexpression of Inhibitory Receptors Enriches for Activated and Functional CD8+ T Cells in Murine Syngeneic Tumor Models. Cancer Immunology Research, 2019, 7, 963-976.	1.6	36
6	c-Maf-dependent Treg cell control of intestinal TH17 cells and IgA establishes host–microbiota homeostasis. Nature Immunology, 2019, 20, 471-481.	7.0	138
7	Ribonucleoprotein Transfection for CRISPR/Cas9â€Mediated Gene Knockout in Primary T Cells. Current Protocols in Immunology, 2019, 124, e69.	3.6	29
8	Targeting IL-10 Family Cytokines for the Treatment of Human Diseases. Cold Spring Harbor Perspectives in Biology, 2019, 11, a028548.	2.3	163
9	Tumor suppressor BAP1 is essential for thymic development and proliferative responses of T lymphocytes. Science Immunology, 2018, 3, .	5.6	25
10	Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. Journal of Experimental Medicine, 2018, 215, 985-997.	4.2	276
11	Regulation of Interleukin-10 Expression. Advances in Experimental Medicine and Biology, 2016, 941, 89-116.	0.8	108
12	Post-translational regulation of RORγt—A therapeutic target for the modulation of interleukin-17-mediated responses in autoimmune diseases. Cytokine and Growth Factor Reviews, 2016, 30, 1-17.	3.2	54
13	The Itch to degrade ROR-γt. Nature Immunology, 2016, 17, 898-900.	7.0	5
14	The IL-20 Subfamily of Cytokines and Their Receptors. , 2016, , 554-562.		0
15	Interleukin-22 Induces Interleukin-18 Expression from Epithelial Cells during Intestinal Infection. Immunity, 2015, 42, 321-331.	6.6	162
16	Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature, 2015, 518, 417-421.	13.7	110
17	The IL-20 subfamily of cytokines — from host defence to tissue homeostasis. Nature Reviews Immunology, 2014, 14, 783-795.	10.6	287
18	NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature, 2014, 509, 235-239.	13.7	198

SASCHA RUTZ

#	Article	IF	CITATIONS
19	Role of Blimp-1 in programing Th effector cells into IL-10 producers. Journal of Experimental Medicine, 2014, 211, 1807-1819.	4.2	161
20	Role of IL-22 in Microbial Host Defense. Current Topics in Microbiology and Immunology, 2014, 380, 213-236.	0.7	85
21	<scp>IL</scp> â€22, not simply a Th17 cytokine. Immunological Reviews, 2013, 252, 116-132.	2.8	391
22	Regulation of epithelial immunity by IL-17 family cytokines. Trends in Immunology, 2012, 33, 343-349.	2.9	115
23	A Genomic Regulatory Element That Directs Assembly and Function of Immune-Specific AP-1–IRF Complexes. Science, 2012, 338, 975-980.	6.0	298
24	Transcription factor c-Maf mediates the TGF-β-dependent suppression of IL-22 production in TH17 cells. Nature Immunology, 2011, 12, 1238-1245.	7.0	187
25	Regulation of interleukin-10 and interleukin-22 expression in T helper cells. Current Opinion in Immunology, 2011, 23, 605-612.	2.4	64
26	Regulation and Functions of the IL-10 Family of Cytokines in Inflammation and Disease. Annual Review of Immunology, 2011, 29, 71-109.	9.5	1,441
27	Reprogrammed quiescent B cells provide an effective cellular therapy against chronic experimental autoimmune encephalomyelitis. European Journal of Immunology, 2011, 41, 1696-1708.	1.6	37
28	Cutting Edge: Plasmacytoid Dendritic Cells Induce IL-10 Production in T Cells via the Delta-Like-4/Notch Axis. Journal of Immunology, 2010, 184, 550-554.	0.4	71
29	siRNA stabilization prolongs gene knockdown in primary T lymphocytes. European Journal of Immunology, 2008, 38, 2616-2625.	1.6	65
30	Autoregulation of Th1-mediated inflammation by <i>twist1 </i> . Journal of Experimental Medicine, 2008, 205, 1889-1901.	4.2	96
31	Notch regulates IL-10 production by T helper 1 cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3497-3502.	3.3	136
32	Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nature Biotechnology, 2005, 23, 1440-1444.	9.4	129
33	Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. European Journal of Immunology, 2005, 35, 2443-2451.	1.6	97
34	Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. European Journal of Immunology, 2004, 34, 2480-2488.	1.6	466
35	Towards in vivo application of RNA interference - new toys, old problems. Arthritis Research, 2004, 6, 78.	2.0	20
36	Primary Cutaneous Follicle Center Cell Lymphomas and Large B Cell Lymphomas of the Leg Descend from Germinal Center Cells. A Single Cell Polymerase Chain Reaction Analysis. Journal of Investigative Dermatology, 2001, 117, 1512-1520.	0.3	50

SASCHA RUTZ

#	Article	IF	CITATIONS
37	Microanatomical Compartments of Clonal and Reactive T Cells in Mycosis Fungoides: Molecular Demonstration by Single Cell Polymerase Chain Reaction of T Cell Receptor Gene Rearrangements. Journal of Investigative Dermatology, 2000, 115, 620-624.	0.3	33
38	Clonal Evolution in a Primary Cutaneous Follicle Center B Cell Lymphoma Revealed by Single Cell Analysis in Sequential Biopsies. Immunobiology, 2000, 201, 631-644.	0.8	8
39	Mainly unmutated VH genes rearranged in B cells forming germinal centers in a cutaneous pleomorphic T-cell lymphoma. Journal of Cutaneous Pathology, 1999, 26, 6-12.	0.7	5
40	Analysis on the nucleotide sequence level of the ige constant region in patients with atopic dermatitis in comparison to non-atopic individuals. Journal of Dermatological Science, 1998, 16, S169.	1.0	0