I-Che Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8344843/publications.pdf

Version: 2024-02-01

28	1,764	19	26
papers	citations	h-index	g-index
30	30	30	2947
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improving the Photostability of Semiconducting Polymer Dots Using Buffers. Analytical Chemistry, 2018, 90, 11785-11790.	6.5	9
2	Ratiometric Barcoding for Mass Cytometry. Analytical Chemistry, 2018, 90, 10688-10694.	6.5	9
3	Semiconducting polymer dots with bright narrow-band emission at 800 nm for biological applications. Chemical Science, 2017, 8, 3390-3398.	7.4	67
4	Photostable Ratiometric Pdot Probe for in Vitro and in Vivo Imaging of Hypochlorous Acid. Journal of the American Chemical Society, 2017, 139, 6911-6918.	13.7	311
5	Lanthanideâ€Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angewandte Chemie, 2017, 129, 15104-15108.	2.0	3
6	Lanthanideâ€Coordinated Semiconducting Polymer Dots Used for Flow Cytometry and Mass Cytometry. Angewandte Chemie - International Edition, 2017, 56, 14908-14912.	13.8	32
7	Highly photostable wide-dynamic-range pH sensitive semiconducting polymer dots enabled by dendronizing the near-IR emitters. Chemical Science, 2017, 8, 7236-7245.	7.4	48
8	Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots. Nature Communications, 2016, 7, 11468.	12.8	85
9	Copper(<scp>ii</scp>)-doped semiconducting polymer dots forÂnitroxyl imaging in live cells. RSC Advances, 2016, 6, 103618-103621.	3.6	9
10	Squaraine-Based Polymer Dots with Narrow, Bright Near-Infrared Fluorescence for Biological Applications. Journal of the American Chemical Society, 2015, 137, 173-178.	13.7	145
11	Light-induced crosslinkable semiconducting polymer dots. Chemical Science, 2015, 6, 2102-2109.	7.4	22
12	A New Series of Fluorescent Indicators for Super Acids. Photochemistry and Photobiology, 2015, 91, 654-659.	2.5	3
13	Semiconducting polymer dots with monofunctional groups. Chemical Communications, 2014, 50, 5604-5607.	4.1	15
14	Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications. ACS Macro Letters, 2014, 3, 1051-1054.	4.8	20
15	Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness. ACS Nano, 2013, 7, 376-384.	14.6	197
16	Reversible Photoswitching of Spiropyran-Conjugated Semiconducting Polymer Dots. Analytical Chemistry, 2012, 84, 9431-9438.	6.5	80
17	Hybrid Semiconducting Polymer Dot–Quantum Dot with Narrow-Band Emission, Near-Infrared Fluorescence, and High Brightness. Journal of the American Chemical Society, 2012, 134, 7309-7312.	13.7	113
18	Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging. Advanced Materials, 2012, 24, 3498-3504.	21.0	120

#	Article	IF	CITATIONS
19	Covalent Crossâ€Linking: Stable Functionalization of Small Semiconducting Polymer Dots via Covalent Crossâ€Linking and Their Application for Specific Cellular Imaging (Adv. Mater. 26/2012). Advanced Materials, 2012, 24, 3577-3577.	21.0	O
20	Superiority of Branched Side Chains in Spontaneous Nanowire Formation: Exemplified by Poly(3â€2â€methylbutylthiophene) for Highâ€Performance Solar Cells. Small, 2011, 7, 1098-1107.	10.0	57
21	Enhanced Performance and Air Stability of 3.2% Hybrid Solar Cells: How the Functional Polymer and CdTe Nanostructure Boost the Solar Cell Efficiency. Advanced Materials, 2011, 23, 5451-5455.	21.0	107
22	A new recognition concept using dye sensitized solar cell configuration. Chemical Communications, 2011, 47, 985-987.	4.1	11
23	15-Crown-5 Functionalized Au Nanoparticles Synthesized via Single Molecule Exchange on Silica Nanoparticles: Its Application to Probe 15-Crown-5/K∢sup>+/15-Crown-5 "Sandwiches―as Linking Mechanisms. Journal of Physical Chemistry C, 2009, 113, 1686-1693.	3.1	23
24	Homogeneous, surfactant-free gold nanoparticles encapsulated by polythiophene analogues. Chemical Communications, 2009, , 1996.	4.1	26
25	Highly luminescent, homogeneous ZnO nanoparticles synthesized via semiconductive polyalkyloxylthiophene template. Journal of Materials Chemistry, 2009, 19, 7284.	6.7	35
26	Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5152.	4.1	195
27	Cu(i) chelated poly-alkoxythiophene enhancing photovoltaic device composed of a P3HT/PCBM heterojunction system. Journal of Materials Chemistry, 2008, 18, 4297.	6.7	22
28	Femtosecond Spectroscopy and Dynamics of the Azulenylosquaric Dye, a Nearâ€infrared Nonfluorogenic Quencher. Journal of the Chinese Chemical Society, 2006, 53, 1275-1283.	1.4	0