Umut Ozcan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8344163/publications.pdf

Version: 2024-02-01

27 9,400 20 26
papers citations h-index g-index

27 27 27 12194
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science, 2004, 306, 457-461.	12.6	3,268
2	Chemical Chaperones Reduce ER Stress and Restore Glucose Homeostasis in a Mouse Model of Type 2 Diabetes. Science, 2006, 313, 1137-1140.	12.6	2,154
3	Endoplasmic Reticulum Stress Plays a Central Role in Development of Leptin Resistance. Cell Metabolism, 2009, 9, 35-51.	16.2	770
4	Treatment of Obesity with Celastrol. Cell, 2015, 161, 999-1011.	28.9	558
5	Loss of the Tuberous Sclerosis Complex Tumor Suppressors Triggers the Unfolded Protein Response to Regulate Insulin Signaling and Apoptosis. Molecular Cell, 2008, 29, 541-551.	9.7	389
6	β-cell–specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nature Genetics, 2002, 31, 111-115.	21.4	345
7	The regulatory subunits of PI3K, p85 \hat{l} ± and p85 \hat{l} 2, interact with XBP-1 and increase its nuclear translocation. Nature Medicine, 2010, 16, 429-437.	30.7	267
8	Regulation of glucose homeostasis through a XBP-1–FoxO1 interaction. Nature Medicine, 2011, 17, 356-365.	30.7	249
9	Unfolded Protein Response Signaling and Metabolic Diseases. Journal of Biological Chemistry, 2014, 289, 1203-1211.	3.4	238
10	Sarco(endo)plasmic reticulum Ca ²⁺ -ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19320-19325.	7.1	193
11	p38 MAPK–mediated regulation of Xbp1s is crucial for glucose homeostasis. Nature Medicine, 2011, 17, 1251-1260.	30.7	178
12	Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nature Medicine, 2016, 22, 1023-1032.	30.7	166
13	Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell, 2017, 169, 148-160.e15.	28.9	153
14	IL1R1 is required for celastrol's leptin-sensitization and antiobesity effects. Nature Medicine, 2019, 25, 575-582.	30.7	84
15	Inflammation Improves Glucose Homeostasis through IKKβ-XBP1s Interaction. Cell, 2016, 167, 1052-1066.e18.	28.9	77
16	Potential for therapeutic manipulation of the UPR in disease. Seminars in Immunopathology, 2013, 35, 351-373.	6.1	74
17	XBP1s Is an Anti-lipogenic Protein. Journal of Biological Chemistry, 2016, 291, 17394-17404.	3.4	57
18	BRD7 Regulates XBP1s' Activity and Glucose Homeostasis through Its Interaction with the Regulatory Subunits of PI3K. Cell Metabolism, 2014, 20, 73-84.	16.2	56

#	Article	IF	Citations
19	Yin Yang 1 protein ameliorates diabetic nephropathy pathology through transcriptional repression of TGFl 2 1. Science Translational Medicine, 2019, 11, .	12.4	37
20	Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy, 2021, 17, 4363-4385.	9.1	26
21	PGC- $1\hat{l}\pm$ functions as a co-suppressor of XBP1s to regulate glucose metabolism. Molecular Metabolism, 2018, 7, 119-131.	6.5	24
22	Mitofusins: Mighty Regulators of Metabolism. Cell, 2013, 155, 17-18.	28.9	12
23	FKBP11 rewires UPR signaling to promote glucose homeostasis in type 2 diabetes and obesity. Cell Metabolism, 2022, 34, 1004-1022.e8.	16.2	9
24	Lipocalin 2 Does Not Play A Role in Celastrol-Mediated Reduction in Food Intake and Body Weight. Scientific Reports, 2019, 9, 12809.	3.3	8
25	IRS1Ser307 phosphorylation does not mediate mTORC1-induced insulin resistance. Biochemical and Biophysical Research Communications, 2014, 443, 689-693.	2.1	7
26	Mom's Milk Molds Neural Wiring for Metabolism. Cell, 2014, 156, 396-397.	28.9	1
27	Antisense-mediated senseful regulation of orchestrated metabolic response. Cell Chemical Biology, 2022, 29, 539-540.	5. 2	0