
Cs Chim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8343372/publications.pdf Version: 2024-02-01

СсСим

#	Article	IF	CITATIONS
1	Primary nasal natural killer cell lymphoma: long-term treatment outcome and relationship with the International Prognostic Index. Blood, 2004, 103, 216-221.	1.4	363
2	SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood, 2004, 103, 4630-4635.	1.4	224
3	Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis, 2010, 31, 745-750.	2.8	160
4	Epigenetic Inactivation of the miR-124-1 in Haematological Malignancies. PLoS ONE, 2011, 6, e19027.	2.5	153
5	Methylation of p15 and p16 Genes in Acute Promyelocytic Leukemia: Potential Diagnostic and Prognostic Significance. Journal of Clinical Oncology, 2001, 19, 2033-2040.	1.6	104
6	Long-term Outcome of 231 Patients With Essential Thrombocythemia. Archives of Internal Medicine, 2005, 165, 2651.	3.8	104
7	Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. Journal of Cellular and Molecular Medicine, 2011, 15, 2760-2767.	3.6	89
8	Central nervous system involvement by multiple myeloma: A multiâ€institutional retrospective study of 172 patients in daily clinical practice. American Journal of Hematology, 2016, 91, 575-580.	4.1	83
9	Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia - implications on constitutive activation of NFκB pathway. Molecular Cancer, 2013, 12, 173.	19.2	66
10	Autologous bone marrow transplantation for primary nasal T/NK cell lymphoma. Bone Marrow Transplantation, 1997, 19, 91-93.	2,4	65
11	Methylation ofp15 andp16 genes in adult acute leukemia. Cancer, 2001, 91, 2222-2229.	4.1	63
12	Epigenetic inactivation of the MIR34B/C in multiple myeloma. Blood, 2011, 118, 5901-5904.	1.4	63
13	Epigenetic silencing of <i>MIR203</i> in multiple myeloma. British Journal of Haematology, 2011, 154, 569-578.	2.5	63
14	Primary CD56 positive lymphomas of the gastrointestinal tract. Cancer, 2001, 91, 525-533.	4.1	59
15	Epigenetic inactivation of the MIR129-2 in hematological malignancies. Journal of Hematology and Oncology, 2013, 6, 16.	17.0	59
16	Epigenetic silencing of a long non-coding RNA KIAA0495 in multiple myeloma. Molecular Cancer, 2015, 14, 175.	19.2	40
17	Molecular detection of minimal residual disease in multiple myeloma. British Journal of Haematology, 2018, 181, 11-26.	2.5	39
18	Methylation of miR-34a, miR-34b/c, miR-124-1 and miR-203 in Ph-negative myeloproliferative neoplasms. Journal of Translational Medicine, 2011, 9, 197.	4.4	38

Cs Снім

#	Article	IF	CITATIONS
19	Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/Apaf-1 apoptosis pathway in multiple myeloma. Journal of Clinical Pathology, 2007, 60, 664-669.	2.0	37
20	Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma. Journal of Clinical Pathology, 2007, 60, 104-106.	2.0	37
21	Pharmacokinetics and safety of ixazomib plus lenalidomide–dexamethasone in Asian patients with relapsed/refractory myeloma: a phase 1 study. Journal of Hematology and Oncology, 2015, 8, 103.	17.0	37
22	Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. Journal of Translational Medicine, 2014, 12, 52.	4.4	35
23	Gene Hypermethylation in Multiple Myeloma: Lessons from a Cancer Pathway Approach. Clinical Lymphoma and Myeloma, 2008, 8, 331-339.	1.4	32
24	Methylation of <i>miR-155-3p</i> in mantle cell lymphoma and other non-Hodgkin's lymphomas. Oncotarget, 2014, 5, 9770-9782.	1.8	30
25	Frequent epigenetic inactivation of Rb1 in addition to p15 and p16 in mantle cell and follicular lymphoma. Human Pathology, 2007, 38, 1849-1857.	2.0	29
26	DNA methylation of tumor suppressor protein-coding and non-coding genes in multiple myeloma. Epigenomics, 2015, 7, 985-1001.	2.1	29
27	Disseminated fusarium infection after ibrutinib therapy in chronic lymphocytic leukaemia. Annals of Hematology, 2017, 96, 871-872.	1.8	29
28	Epigenetic silencing of tumor suppressor long non-coding RNA <i>BM742401</i> in chronic lymphocytic leukemia. Oncotarget, 2016, 7, 82400-82410.	1.8	26
29	Infrequent Wnt inhibitory factor-1 (Wif-1) methylation in chronic lymphocytic leukemia. Leukemia Research, 2006, 30, 1135-1139.	0.8	25
30	<scp>LDH</scp> is an adverse prognostic factor independent of <scp>ISS</scp> in transplantâ€eligible myeloma patients receiving bortezomibâ€based induction regimens. European Journal of Haematology, 2015, 94, 330-335.	2.2	25
31	Standardized Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma. Frontiers in Oncology, 2019, 9, 449.	2.8	25
32	Epigenetic silencing of miR-340-5p in multiple myeloma: mechanisms and prognostic impact. Clinical Epigenetics, 2019, 11, 71.	4.1	23
33	Side Effects and Good Effects from New Chemotherapeutic Agents. Journal of Clinical Oncology, 2005, 23, 2426-2428.	1.6	21
34	Epigenetic silencing of tumor suppressor <i>miR-3151</i> contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways. Oncotarget, 2015, 6, 44422-44436.	1.8	21
35	RANKL expression in myeloma cells is regulated by a network involving RANKL promoter methylation, DNMT1, microRNA and TNFα in the microenvironment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1834-1838.	4.1	20
36	High applicability of ASO-RQPCR for detection of minimal residual disease in multiple myeloma by entirely patient-specific primers/probes. Journal of Hematology and Oncology, 2016, 9, 107.	17.0	20

Cs Chim

#	Article	IF	CITATIONS
37	Lowâ€dose pembrolizumab and nivolumab were efficacious and safe in relapsed and refractory classical Hodgkin lymphoma: Experience in a resourceâ€constrained setting. Hematological Oncology, 2020, 38, 726-736.	1.7	20
38	Case 2: Meningeal Relapse in Hodgkin's Disease. Journal of Clinical Oncology, 2000, 18, 1153-1153.	1.6	19
39	Primary Granulocytic Sarcoma of the Mediastinum. Leukemia and Lymphoma, 2004, 45, 1931-1933.	1.3	18
40	Recent advances in the management of multiple myeloma: clinical impact based on resource-stratification. Consensus statement of the Asian Myeloma Network at the 16th international myeloma workshop. Leukemia and Lymphoma, 2018, 59, 2305-2317.	1.3	18
41	Adverse prognostic impact ofCDKN2Bhyper-methylationin acute promyelocytic leukemia. Leukemia and Lymphoma, 2006, 47, 815-825.	1.3	15
42	Epigenetic silencing of LPP/miR-28 in multiple myeloma. Journal of Clinical Pathology, 2018, 71, 253-258.	2.0	15
43	Two Unusual Lymphomas. Journal of Clinical Oncology, 2000, 18, 3733-3735.	1.6	14
44	Methylation of tumor suppressor microRNAs: lessons from lymphoid malignancies. Expert Review of Molecular Diagnostics, 2012, 12, 755-765.	3.1	14
45	DNA Methylation of Tumor Suppressive miRNAs in Non-Hodgkin's Lymphomas. Frontiers in Genetics, 2012, 3, 233.	2.3	14
46	Epigenetic silencing of EVL/miR-342 in multiple myeloma. Translational Research, 2018, 192, 46-53.	5.0	14
47	Venetoclax, bortezomib and S63845, an MCL1 inhibitor, in multiple myeloma. Journal of Pharmacy and Pharmacology, 2020, 72, 728-737.	2.4	14
48	Unusual Abdominal Tumors. Journal of Clinical Oncology, 2003, 21, 953-955.	1.6	13
49	Treatment outcome and prognostic factor analysis in transplant-eligible Chinese myeloma patients receiving bortezomib-based induction regimens including the staged approach, PAD or VTD. Journal of Hematology and Oncology, 2012, 5, 28.	17.0	13
50	Multiple myeloma in patients up to 30Âyears of age: a multicenter retrospective study of 52 cases. Leukemia and Lymphoma, 2019, 60, 471-476.	1.3	13
51	Frequent methylation of the tumour suppressor miRâ€1258 targeting PDL1: implication in multiple myelomaâ€specific cytotoxicity and prognostification. British Journal of Haematology, 2020, 190, 249-261.	2.5	12
52	Common Malignancies With Uncommon Sites of Presentation. Journal of Clinical Oncology, 2003, 21, 4456-4458.	1.6	11
53	Primary Follicular Lymphoma of the Small Intestine. Leukemia and Lymphoma, 2004, 45, 1463-1466.	1.3	11
54	Pulmonary Interstitial Amyloidosis Complicating Multiple Myeloma. Journal of Clinical Oncology, 2008, 26, 504-506.	1.6	11

Cs Снім

#	Article	IF	CITATIONS
55	Establishment of a bortezomib-resistant Chinese human multiple myeloma cell line: MMLAL. Cancer Cell International, 2013, 13, 122.	4.1	11
56	Frequent functional activation of RAS signalling not explained by RAS/RAF mutations in relapsed/refractory multiple myeloma. Scientific Reports, 2018, 8, 13522.	3.3	11
57	Epigenetic silencing of miR-342-3p in B cell lymphoma and its impact on autophagy. Clinical Epigenetics, 2020, 12, 150.	4.1	11
58	Epigenetic silencing of long non-coding RNA BM742401 in multiple myeloma: impact on prognosis and myeloma dissemination. Cancer Cell International, 2020, 20, 403.	4.1	11
59	Upgraded Standardized Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma. Journal of Molecular Diagnostics, 2020, 22, 679-684.	2.8	11
60	A multicenter retrospective study of 223 patients with t(14;16) in multiple myeloma. American Journal of Hematology, 2020, 95, 503-509.	4.1	11
61	Extrapulmonary tuberculous abscess in chronic lymphocytic leukaemia (CLL) treated with fludarabine: Case report and review of literature. American Journal of Hematology, 2005, 79, 246-247.	4.1	9
62	Restoration of chemosensitivity by bortezomib: implications for refractory myeloma. Nature Reviews Clinical Oncology, 2009, 6, 237-240.	27.6	8
63	miR-1250-5p is a novel tumor suppressive intronic miRNA hypermethylated in non-Hodgkin's lymphoma: novel targets with impact on ERK signaling and cell migration. Cell Communication and Signaling, 2021, 19, 62.	6.5	8
64	Updated survivals and prognostic factor analysis in myeloma treated by a staged approach use of bortezomib/thalidomide/dexamethasone in transplant eligible patients. Journal of Translational Medicine, 2010, 8, 124.	4.4	7
65	Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma of the Jejunum: an Elusive Cause of Recurrent Upper Gastrointestinal Bleeding. Leukemia and Lymphoma, 2004, 45, 405-407.	1.3	6
66	Plasma Cell Problems. Journal of Clinical Oncology, 2005, 23, 3140-3143.	1.6	6
67	Primary refractory multiple myeloma: a real-world experience with 85 cases. Leukemia and Lymphoma, 2020, 61, 2868-2875.	1.3	6
68	Bone marrow necrosis in bone marrow transplantation: the role of MR imaging. Bone Marrow Transplantation, 1998, 22, 1125-1128.	2.4	5
69	Eosinophilic Leukemic Transformation in Polycythemia Rubra Vera (PRV). Leukemia and Lymphoma, 2005, 46, 447-450.	1.3	4
70	Hodgkin's lymphoma as a second cancer in multiple myeloma never exposed to lenalidomide. Annals of Hematology, 2013, 92, 855-857.	1.8	4
71	Case series: MRD negativity assessment using ¹¹ C-Acetate PET with 3-weekly daratumumab-based quadruplet induction in newly diagnosed multiple myeloma. Therapeutic Advances in Hematology, 2021, 12, 204062072110303.	2.5	4
72	Epigenetic Silencing of Tumor Suppressor IncRNA NKILA: Implication on NF-κB Signaling in Non-Hodgkin's Lymphoma. Genes, 2022, 13, 128.	2.4	4

Cs Снім

#	Article	IF	CITATIONS
73	Giant pronormoblasts in parvovirus-associated pure red cell aplasia. American Journal of Hematology, 2000, 65, 289-289.	4.1	3
74	Unsustained complete response of less than 24 months after autologous stem cell transplantation predicts aggressive myeloma with short survival. Hematological Oncology, 2014, 32, 205-211.	1.7	3
75	Different MAF translocations confer similar prognosis in newly diagnosed multiple myeloma patients. Leukemia and Lymphoma, 2020, 61, 1885-1893.	1.3	3
76	3-weekly daratumumab-lenalidomide/pomalidomide-dexamethasone is highly effective in relapsed and refractory multiple myeloma. Hematology, 2021, 26, 652-655.	1.5	3
77	Minimal Residual Disease Detection by Next-Generation Sequencing in Multiple Myeloma: A Comparison With Real-Time Quantitative PCR. Frontiers in Oncology, 2020, 10, 611021.	2.8	3
78	The impact of bortezomib-based induction in newly diagnosed multiple myeloma with chromosome 1q21 gain. Therapeutic Advances in Hematology, 2022, 13, 204062072210820.	2.5	3
79	Advanced stage and unfavorable Hodgkin's disease in the Chinese?a 20-year experience. , 1999, 61, 159-163.		2
80	Distinct promoter methylation profile reveals spatial epigenetic heterogeneity in 2 myeloma patients with multifocal extramedullary relapses. Clinical Epigenetics, 2018, 10, 158.	4.1	2
81	A proof-of-concept study for the pathogenetic role of enhancer hypomethylation of MYBPHL in multiple myeloma. Scientific Reports, 2021, 11, 7009.	3.3	2
82	Daratumumab, Bortezomib, Melphalan, and Prednisone Versus Bortezomib, Melphalan, and Prednisone in Transplant-Ineligible Patients with Newly Diagnosed Multiple Myeloma: Pooled Analysis of Octans and Alcyone. Blood, 2021, 138, 1661-1661.	1.4	2
83	Splenic rupture as the presenting symptom of blastic crisis in a patient with Philadelphia-negative, bcr-abl-positive ET. American Journal of Hematology, 2001, 66, 70-71.	4.1	1
84	Pathological Bone Fracture in Non-Hodgkin's Lymphoma. Journal of Clinical Oncology, 2007, 25, 3175-3176.	1.6	1
85	Lactate dehydrogenase as a prognostic marker in <scp>AL</scp> amyloidosis: expected or unexpected?. British Journal of Haematology, 2017, 178, 833-835.	2.5	1
86	Progression-Free Survival Outcomes By Response Status for Bortezomib, Melphalan, and Prednisone with or without Daratumumab in Newly Diagnosed Multiple Myeloma: Pooled Subgroup Analysis of Octans and Alcyone. Blood, 2021, 138, 1648-1648.	1.4	1
87	Ficolled bone marrow is superior to bone marrow buffy coat for detection of minimal residual disease in multiple myeloma. Hematology, 2019, 24, 533-537.	1.5	0