Yu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8343106/publications.pdf

Version: 2024-02-01

70 1,753 24 40 papers citations h-index g-index

74 74 74 2617 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Fast Analysis of Time-Domain Fluorescence Lifetime Imaging via Extreme Learning Machine. Sensors, 2022, 22, 3758.	3.8	6
2	On Synthetic Instrument Response Functions of Time-Correlated Single-Photon Counting Based Fluorescence Lifetime Imaging Analysis. Frontiers in Physics, 2021, 9, .	2.1	5
3	Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors. Biomedical Optics Express, 2021, 12, 3450.	2.9	14
4	Histogram clustering for rapid time-domain fluorescence lifetime image analysis. Biomedical Optics Express, 2021, 12, 4293.	2.9	4
5	Morphological Changes of Silica Shells Deposited on Gold Nanorods: Implications for Nanoscale Photocatalysts. ACS Applied Nano Materials, 2021, 4, 7730-7738.	5.0	9
6	One-Dimensional Deep Learning Architecture for Fast Fluorescence Lifetime Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-10.	2.9	25
7	Investigations on Average Fluorescence Lifetimes for Visualizing Multi-Exponential Decays. Frontiers in Physics, 2020, 8, .	2.1	31
8	A rapid analysis platform for investigating the cellular locations of bacteria using two-photon fluorescence lifetime imaging microscopy. Methods and Applications in Fluorescence, 2020, 8, 034001.	2.3	9
9	Synthesis of Small Gold Nanorods and Their Subsequent Functionalization with Hairpin Single Stranded DNA. ACS Omega, 2019, 4, 13740-13746.	3 . 5	17
10	Lysozyme encapsulated gold nanoclusters for probing the early stage of lysozyme aggregation under acidic conditions. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111540.	3.8	9
11	Detecting lysozyme unfolding <i>via</i> the fluorescence of lysozyme encapsulated gold nanoclusters. Journal of Materials Chemistry B, 2019, 7, 1167-1175.	5.8	25
12	Critical role of tyrosine-20 in formation of gold nanoclusters within lysozyme: a molecular dynamics study. Physical Chemistry Chemical Physics, 2019, 21, 4907-4911.	2.8	0
13	Comparative analysis of the toxicity of gold nanoparticles in zebrafish. Journal of Applied Toxicology, 2018, 38, 1153-1161.	2.8	28
14	Formation of microcapsules by ultrasound stimulation for use in remote-controlled drug-eluting stents. Medical Engineering and Physics, 2018, 56, 42-47.	1.7	9
15	Polyallylamine hydrochloride coating enhances the fluorescence emission of Human Serum Albumin encapsulated gold nanoclusters. Journal of Photochemistry and Photobiology B: Biology, 2018, 187, 131-135.	3.8	8
16	Plasmonâ€Promoted Electrochemical Oxygen Evolution Catalysis from Gold Decorated MnO ₂ Nanosheets under Green Light. Advanced Functional Materials, 2018, 28, 1801573.	14.9	70
17	Sudlow site II of human serum albumin remains functional after gold nanocluster encapsulation: a fluorescence-based drug binding study of L-Dopa. Methods and Applications in Fluorescence, 2018, 6, 035017.	2.3	9
18	Lysozyme encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics. Physical Chemistry Chemical Physics, 2017, 19, 7228-7235.	2.8	44

#	Article	IF	CITATIONS
19	Endosytosis Study of Gold Nanoparticles through FRET-FLIM Approach. , 2017, , .		О
20	A surface plasmon enhanced FLIM-FRET imaging approach based on Au nanoparticles. Medical Devices and Diagnostic Engineering, $2017, 2, .$	0.1	6
21	Towards unsupervised fluorescence lifetime imaging using low dimensional variable projection. Optics Express, 2016, 24, 26777.	3.4	5
22	Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images. Optics Express, 2016, 24, 13894.	3.4	12
23	Hairpin DNA-functionalized gold nanorods for mRNA detection in homogenous solution. Journal of Biomedical Optics, 2016, 21, 097001.	2.6	18
24	Human serum albumin encapsulated gold nanoclusters: effects of cluster synthesis on natural protein characteristics. Journal of Materials Chemistry B, 2016, 4, 6876-6882.	5.8	30
25	Probing the Sudlow binding site with warfarin: how does gold nanocluster growth alter human serum albumin?. Physical Chemistry Chemical Physics, 2016, 18, 22874-22878.	2.8	17
26	GPU acceleration of time-domain fluorescence lifetime imaging. Journal of Biomedical Optics, 2016, 21, 017001.	2.6	4
27	Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation. Beilstein Journal of Nanotechnology, 2015, 6, 686-696.	2.8	8
28	Hardware-friendly bi-exponential fluorescence lifetime imaging algorithms and phasor approaches. Proceedings of SPIE, 2015, , .	0.8	0
29	Revealing the photophysics of gold-nanobeacons via time-resolved fluorescence spectroscopy. Optics Letters, 2015, 40, 5738.	3.3	5
30	Locating the nucleation sites for protein encapsulated gold nanoclusters: a molecular dynamics and fluorescence study. Physical Chemistry Chemical Physics, 2015, 17, 21935-21941.	2.8	47
31	Surface plasmon enhanced energy transfer between gold nanorods and fluorophores: application to endocytosis study and RNA detection. Faraday Discussions, 2015, 178, 383-394.	3.2	25
32	Fast bi-exponential fluorescence lifetime imaging analysis methods. Optics Letters, 2015, 40, 336.	3.3	15
33	Hardware-friendly bi-exponential fluorescence lifetime imaging algorithms and phasor approaches. , 2015, , .		1
34	Energy transfer between a biological labelling dye and gold nanorods. Methods and Applications in Fluorescence, 2014, 2, 015002.	2.3	25
35	Dye-doped polystyrene-coated gold nanorods: towards wavelength tuneable SPASER. Methods and Applications in Fluorescence, 2014, 2, 024004.	2.3	23
36	Ordered Silver and Copper Nanorod Arrays for Enhanced Raman Scattering Created via Guided Oblique Angle Deposition on Polymer. Journal of Physical Chemistry C, 2014, 118, 4878-4884.	3.1	31

#	Article	IF	CITATIONS
37	Effect of Size, Shape, and Surface Modification on Cytotoxicity of Gold Nanoparticles to Human HEp-2 and Canine MDCK Cells. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	68
38	Fluorescence anisotropy of protein - Gold nanoclusters. , 2012, , .		2
39	Reflectance and surface enhanced Raman scattering (SERS) of sculptured silver films deposited at various vapor incident angles. Measurement Science and Technology, 2012, 23, 084007.	2.6	9
40	Two-photon luminescence and energy transfer of gold nanorods for cell imaging., 2012,,.		0
41	Growth and surface-enhanced Raman scattering of Ag nanoparticle assembly in agarose gel. Measurement Science and Technology, 2012, 23, 084006.	2.6	32
42	Creation and luminescence of size-selected gold nanorods. Nanoscale, 2012, 4, 5017.	5.6	15
43	Kinetic modelling of the shape-dependent evolution of faceted gold nanoparticles. Journal of Materials Chemistry, 2011, 21, 12239.	6.7	25
44	Gold nanorods for applications in biological imaging. , 2011, , .		5
45	Gold nanoparticles for applications in energy and environment: synthesis and characterization. Rare Metals, 2011, 30, 116-120.	7.1	3
46	Two-photon excited surface plasmon enhanced energy transfer between DAPI and gold nanoparticles: Opportunities in intra-cellular imaging and sensing. Applied Physics Letters, 2011, 99, 103701.	3.3	32
47	Charge transport in nanocrystal wires created by direct electron beam writing. Micro and Nano Letters, 2010, 5, 274.	1.3	2
48	Gold nanorods for fluorescence lifetime imaging in biology. Journal of Biomedical Optics, 2010, 15, 020504.	2.6	59
49	<i>Processing and Characterization of Gold Nanoparticles for Use in Plasmon Probe Spectroscopy and Microscopy of Biosystems i>. Annals of the New York Academy of Sciences, 2008, 1130, 201-206.</i>	3.8	24
50	Structures and optical properties of 4–5 nm bimetallic AgAu nanoparticles. Faraday Discussions, 2008, 138, 363-373.	3.2	103
51	Weighing Supported Nanoparticles: Size-Selected Clusters as Mass Standards in Nanometrology. Physical Review Letters, 2008, 101, 246103.	7.8	70
52	Sintering of Passivated Gold Nanoparticles under the Electron Beam. Langmuir, 2006, 22, 2851-2855.	3.5	117
53	Co-deposition of Atomic Clusters of Different Size and Composition. Small, 2006, 2, 1270-1272.	10.0	19
54	Direct imaging of core-shell structure in silver-gold bimetallic nanoparticles. Applied Physics Letters, 2005, 87, 243103.	3.3	61

#	Article	IF	CITATIONS
55	Local Three-Dimensional Visualization of Nanoparticle Assemblies. Advanced Materials, 2005, 17, 2885-2888.	21.0	25
56	Nanoparticle Arrays Patterned by Electron-Beam Writing:Â Structure, Composition, and Electrical Properties. Langmuir, 2005, 21, 1556-1559.	3.5	22
57	Electrostatically Stabilised Nanoparticles: Self-Organization and Electron-Beam Patterning. Journal of Nanoscience and Nanotechnology, 2005, 5, 1826-1831.	0.9	8
58	Gold Nanoparticle Patterning of Silicon Wafers Using Chemical e-Beam Lithography. Langmuir, 2004, 20, 3766-3768.	3.5	203
59	Superstructure of Nanoparticle Assembly by HAADF-STEM. Microscopy and Microanalysis, 2004, 10, 346-347.	0.4	0
60	Nanostructures from nanoparticles. Journal of Physics Condensed Matter, 2003, 15, S3047-S3063.	1.8	21
61	Annealing effects on the microstructure of sputtered gold layers on oxidized silicon investigated by scanning electron microscopy and scanning probe microscopy. Philosophical Magazine, 2003, 83, 1137-1142.	1.6	7
62	Controlling the formation of Au nanoparticles using functionalized molecular buffer layers. Surface Science, 2002, 497, 269-274.	1.9	19
63	HREELS studies of gold nanoparticles with dialkyl sulphide ligands. Surface Science, 2002, 502-503, 208-213.	1.9	13
64	Dialkyl Sulfides:  Novel Passivating Agents for Gold Nanoparticles. Langmuir, 2002, 18, 1791-1795.	3.5	75
65	Desorption of organic species from the GaAs (100) surface at low temperatures using low energy electron irradiation in a hydrogen ambient. Applied Physics Letters, 2000, 76, 3034-3036.	3.3	2
66	HREELS study of alkanethiol passivated gold clusters on graphite. Surface Science, 2000, 454-456, 963-967.	1.9	11
67	Indirect Band Gap of Light-EmittingBC2N. Physical Review Letters, 1999, 83, 2406-2408.	7.8	81
68	Adsorption and decomposition of ethylene (C2H4) on GaAs(100). Surface Science, 1999, 441, 192-198.	1.9	5
69	Weak adsorption of ethylene on GaAs(100). Physical Review B, 1998, 58, 1177-1180.	3.2	15
70	Study of Glucose Binding Protein Encapsulated Gold Nanoclusters by Molecular Dynamic Simulation. Materials Science Forum, 0, 948, 133-139.	0.3	3