Leo K Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8342895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Finite-Time Contraction Control of a Ring-Shaped Soft Pneumatic Actuator Mimicking Gastric Pathologic Motility Conditions. Soft Robotics, 2023, 10, 221-233.	8.0	4
2	Quantification of Gastric Slow Wave Velocity Using Bipolar High-Resolution Recordings. IEEE Transactions on Biomedical Engineering, 2022, 69, 1063-1071.	4.2	1
3	A Biologically Inspired Ring-Shaped Soft Pneumatic Actuator for Large Deformations. Soft Robotics, 2022, 9, 807-819.	8.0	12
4	Nonlinear Model Predictive Control of a Robotic Soft Esophagus. IEEE Transactions on Industrial Electronics, 2022, 69, 10363-10373.	7.9	3
5	Muscle-Specific High-Density Electromyography Arrays for Hand Gesture Classification. IEEE Transactions on Biomedical Engineering, 2022, 69, 1758-1766.	4.2	6
6	High-Resolution Spatiotemporal Quantification of Intestinal Motility With Free-Form Deformation. IEEE Transactions on Biomedical Engineering, 2022, 69, 2077-2086.	4.2	7
7	Experimental Study on the Closed-Loop Control of a Soft Ring-Shaped Actuator for Gastric Simulator <i></i> . IEEE/ASME Transactions on Mechatronics, 2022, 27, 3548-3558.	5.8	6
8	Analysis of Regional Variations of the Interstitial Cells of Cajal in the Murine Distal Stomach Informed by Confocal Imaging and Machine Learning Methods. Cellular and Molecular Bioengineering, 2022, 15, 193-205.	2.1	8
9	Experimental and Computational Studies of Peristaltic Flow in a Duodenal Model. Fluids, 2022, 7, 40.	1.7	7
10	A framework for the design of a closed-loop gastric pacemaker for treating conduction block. Computer Methods and Programs in Biomedicine, 2022, 216, 106652.	4.7	1
11	Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model. American Journal of Physiology - Renal Physiology, 2022, 322, G431-G445.	3.4	10
12	Editorial: Translational Side of Emerging Invasive and Non-invasive Stimulation Therapies. Frontiers in Neuroscience, 2022, 16, 872551.	2.8	0
13	A combined functional dorsal nerve model of the foot. Mathematical Biosciences and Engineering, 2022, 19, 9321-9334.	1.9	0
14	Abstract 2222: Detecting clinically significant prostate cancers: Tissue metabolomics refines multiparametric MRI-ultrasound fusion prostate biopsy. Cancer Research, 2022, 82, 2222-2222.	0.9	0
15	Highâ€resolution <i>in vivo</i> monophasic gastric slow waves to quantify activation and recovery profiles. Neurogastroenterology and Motility, 2022, 34, .	3.0	5
16	RoSE: A Robotic Soft Esophagus for Endoprosthetic Stent Testing. Soft Robotics, 2021, 8, 397-415.	8.0	16
17	SoGut: A Soft Robotic Gastric Simulator. Soft Robotics, 2021, 8, 273-283.	8.0	30
18	A Novel High-Density Electromyography Probe for Evaluating Anorectal Neurophysiology: Design, Human Feasibility Study, and Validation with Trans-Sacral Magnetic Stimulation. Annals of Biomedical Engineering, 2021, 49, 502-514.	2.5	4

#	Article	IF	CITATIONS
19	Effects of magnetogastrography sensor configurations in tracking slow wave propagation. Computers in Biology and Medicine, 2021, 129, 104169.	7.0	7
20	Current applications of mathematical models of the interstitial cells of Cajal in the gastrointestinal tract. WIREs Mechanisms of Disease, 2021, 13, e1507.	3.3	6
21	ManoMap: an automated system for characterization of colonic propagating contractions recorded by high-resolution manometry. Medical and Biological Engineering and Computing, 2021, 59, 417-429.	2.8	10
22	Transmural recordings of gastrointestinal electrical activity using a spatially-dense microelectrode array. Physiological Measurement, 2021, 42, 035009.	2.1	3
23	Effect of Platinum-Catalysed Silicone Elastomer Encapsulation on the Performance of Embedded Stretchable Capacitive Multimodal Sensor. IEEE Sensors Journal, 2021, 21, 6248-6257.	4.7	2
24	Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach. American Journal of Physiology - Renal Physiology, 2021, 320, G573-G585.	3.4	15
25	Strategies to Refine Gastric Stimulation and Pacing Protocols: Experimental and Modeling Approaches. Frontiers in Neuroscience, 2021, 15, 645472.	2.8	23
26	Evaluation of serological lateral flow assays for severe acute respiratory syndrome coronavirus-2. BMC Infectious Diseases, 2021, 21, 580.	2.9	20
27	Design and Validation of a Surface-Contact Electrode for Gastric Pacing and Concurrent Slow-Wave Mapping. IEEE Transactions on Biomedical Engineering, 2021, 68, 2574-2581.	4.2	13
28	Design and Characterization of a Bellows-Driven Soft Pneumatic Actuator. IEEE/ASME Transactions on Mechatronics, 2021, 26, 2327-2338.	5.8	30
29	The influence of interstitial cells of Cajal loss and aging on slow wave conduction velocity in the human stomach. Physiological Reports, 2021, 8, e14659.	1.7	14
30	Localized gastric distension disrupts slow-wave entrainment leading to temporary ectopic propagation: a high-resolution electrical mapping study. American Journal of Physiology - Renal Physiology, 2021, 321, G656-G667.	3.4	8
31	Reconstruction of stomach geometry using magnetic source localization. , 2021, 2021, 4234-4237.		2
32	Screening human lung cancer with predictive models of serum magnetic resonance spectroscopy metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
33	Simulation of Solid Meal Digestion in a Soft Gastric Robot using SOFA. , 2021, , .		1
34	Characterization of Slow Wave Activity in Ex-vivo Porcine Small Intestine Segments. , 2021, 2021, 7296-7299.		0
35	A Simulated Anatomically Accurate Investigation Into the Effects of Biodiversity on Electrogastrography. IEEE Transactions on Biomedical Engineering, 2020, 67, 868-875.	4.2	7
36	Sparse Machine Learning Discovery of Dynamic Differential Equation of an Esophageal Swallowing Robot. IEEE Transactions on Industrial Electronics, 2020, 67, 4711-4720.	7.9	12

#	Article	IF	CITATIONS
37	A novel approach for model-based design of gastric pacemakers. Computers in Biology and Medicine, 2020, 116, 103576.	7.0	9
38	High-Density Electromyography Based Control of Robotic Devices: On the Execution of Dexterous Manipulation Tasks. , 2020, , .		5
39	Trace Mapping: A New Visualization Technique for Analyzing Gastrointestinal High-Resolution Electrical Mapping Data. , 2020, 2020, 5212-5215.		1
40	Transmural Temperature Monitoring to Quantify Thermal Conduction And Lesion Formation During Gastric Ablation, an Emerging Therapy for Gastric Dysrhythmias. , 2020, 2020, 5259-5262.		1
41	Computational Reconstruction of 3D Stomach Geometry using Magnetic Field Source Localization. , 2020, 2020, 2376.		1
42	Detection of Slow Wave Propagation Direction Using Bipolar High-Resolution Recordings. , 2020, 2020, 837-840.		1
43	Bioelectrical Signals for the Diagnosis and Therapy of Functional Gastrointestinal Disorders. Applied Sciences (Switzerland), 2020, 10, 8102.	2.5	14
44	A Spatially-dense Microfabricated Photolithographic Electrode Array for Gastrointestinal Slow Wave Recordings *. , 2020, 2020, 3957-3960.		0
45	High-Resolution Mapping of Intestinal Spike Bursts and Motility. , 2020, 2020, 1779-1782.		3
46	Experimental Investigation into the Dynamics of a Radially Contracting Actuator with Embedded Sensing Capability. Soft Robotics, 2020, 7, 478-490.	8.0	13
47	Electroceutical Approaches for Gastroparesis. , 2020, , 967-982.		9
48	Effects of Electrode Diameter and Contact Material on Signal Morphology of Gastric Bioelectrical Slow Wave Recordings. Annals of Biomedical Engineering, 2020, 48, 1407-1418.	2.5	7
49	Soft Medical Robots-Revamping the Diagnostics and Therapeutics Technologies. Journal of Engineering and Science in Medical Diagnostics and Therapy, 2020, 3, .	0.5	3
50	Using high-resolution magic angle spinning magnetic resonance spectroscopy to characterize the metabolomic profile of fat-poor angiomyolipoma and renal cell carcinoma Journal of Clinical Oncology, 2020, 38, 711-711.	1.6	0
51	Using high-resolution magic angle spinning magnetic resonance spectroscopy to characterize the metabolomic profile of renal cell carcinoma Journal of Clinical Oncology, 2020, 38, 710-710.	1.6	0
52	Noninvasive Magnetogastrography Detects Erythromycin-Induced Effects on the Gastric Slow Wave. IEEE Transactions on Biomedical Engineering, 2019, 66, 327-334.	4.2	7
53	Highâ€resolution optical mapping of gastric slow wave propagation. Neurogastroenterology and Motility, 2019, 31, e13449.	3.0	16
54	Quantification of gastric emptying caused by impaired coordination of pyloric closure with antral contraction: a simulation study. Journal of the Royal Society Interface, 2019, 16, 20190266.	3.4	32

#	Article	IF	CITATIONS
55	Development and feasibility of an ambulatory acquisition system for fiberâ€optic highâ€resolution colonic manometry. Neurogastroenterology and Motility, 2019, 31, e13704.	3.0	6
56	Magnetic Resonance Spectroscopy-based Metabolomic Biomarkers for Typing, Staging, and Survival Estimation of Early-Stage Human Lung Cancer. Scientific Reports, 2019, 9, 10319.	3.3	23
57	Dynamic slowâ€wave interactions in the rabbit small intestine defined using highâ€resolution mapping. Neurogastroenterology and Motility, 2019, 31, e13670.	3.0	15
58	Slow-wave coupling across a gastroduodenal anastomosis as a mechanism for postsurgical gastric dysfunction: evidence for a "gastrointestinal aberrant pathway― American Journal of Physiology - Renal Physiology, 2019, 317, G141-G146.	3.4	26
59	Response to re: Metabolomic prostate cancer fields in HRMAS MRSâ€profiled histologically benign tissue vary with cancer status and distance from cancer. Dinges et al., NBM 2019. NMR in Biomedicine, 2019, 32, e4120.	2.8	0
60	Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nature Reviews Urology, 2019, 16, 339-362.	3.8	99
61	A Soft Ring-Shaped Actuator for Radial Contracting Deformation: Design and Modeling. Soft Robotics, 2019, 6, 444-454.	8.0	26
62	High-resolution Mapping of Hyperglycemia-induced Gastric Slow Wave Dysrhythmias. Journal of Neurogastroenterology and Motility, 2019, 25, 276-285.	2.4	17
63	A Formal Approach for Scalable Simulation of Gastric ICC Electrophysiology. IEEE Transactions on Biomedical Engineering, 2019, 66, 3320-3329.	4.2	11
64	A Novel Gastric Pacing Device to Modulate Slow Waves and Assessment by High-Resolution Mapping. IEEE Transactions on Biomedical Engineering, 2019, 66, 2823-2830.	4.2	39
65	Multi-day, multi-sensor ambulatory monitoring of gastric electrical activity. Physiological Measurement, 2019, 40, 025011.	2.1	16
66	Methods for Visualization of Gastric Endoscopic Mapping Data From Three-Dimensional, Non-Uniform Electrode Arrays. , 2019, 2019, 2222-2225.		1
67	Feasibility of High-Resolution Electrical Mapping for Characterizing Conduction Blocks Created by Gastric Ablation. , 2019, 2019, 170-173.		9
68	Detection of Monophasic Slow-wave Activation Phase Using Wavelet Decomposition. , 2019, 2019, 7157-7160.		2
69	Methods for High-Resolution Electrical Mapping in the Gastrointestinal Tract. IEEE Reviews in Biomedical Engineering, 2019, 12, 287-302.	18.0	51
70	Metabolomic prostate cancer fields in HRMAS MRSâ€profiled histologically benign tissue vary with cancer status and distance from cancer. NMR in Biomedicine, 2019, 32, e4038.	2.8	16
71	Torso-Tank Validation of High-Resolution Electrogastrography (EGG): Forward Modelling, Methodology and Results. Annals of Biomedical Engineering, 2018, 46, 1183-1193.	2.5	16
72	Metabolomic Prediction of Human Prostate Cancer Aggressiveness: Magnetic Resonance Spectroscopy of Histologically Benign Tissue. Scientific Reports, 2018, 8, 4997.	3.3	39

#	Article	IF	CITATIONS
73	A Miniature Configurable Wireless System for Recording Gastric Electrophysiological Activity and Delivering High-Energy Electrical Stimulation. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 221-229.	3.6	34
74	Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique. IEEE Transactions on Biomedical Engineering, 2018, 65, 319-326.	4.2	3
75	Prostate cancer diagnosis and characterization with mass spectrometry imaging. Prostate Cancer and Prostatic Diseases, 2018, 21, 297-305.	3.9	19
76	A Soft Ring-shaped Actuator: FE Simulation and Motion Tracking. , 2018, , .		1
77	Testing and Analysis of Migration Displacement of a Flared Stent Deployed in an Esophageal Swallowing Robot , 2018, , .		0
78	A Stretchable Array of Electronic Receptors for Esophageal Swallowing Robot for Biomimetic Simulations of Bolus Transport. IEEE Sensors Journal, 2018, 18, 5497-5506.	4.7	7
79	Progress in Mathematical Modeling of Gastrointestinal Slow Wave Abnormalities. Frontiers in Physiology, 2018, 8, 1136.	2.8	30
80	A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns. Surgical Endoscopy and Other Interventional Techniques, 2017, 31, 477-486.	2.4	15
81	Time-Delay Mapping of High-Resolution Gastric Slow-Wave Activity. IEEE Transactions on Biomedical Engineering, 2017, 64, 166-172.	4.2	14
82	A theoretical analysis of anatomical and functional intestinal slow wave re-entry. Journal of Theoretical Biology, 2017, 425, 72-79.	1.7	16
83	Patterns of Abnormal Gastric Pacemaking After Sleeve Gastrectomy Defined by Laparoscopic High-Resolution Electrical Mapping. Obesity Surgery, 2017, 27, 1929-1937.	2.1	45
84	High-resolution anatomic correlation of cyclic motor patterns in the human colon: Evidence of a rectosigmoid brake. American Journal of Physiology - Renal Physiology, 2017, 312, G508-G515.	3.4	82
85	Correct techniques for extracellular recordings of electrical activity in gastrointestinal muscle. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 372-372.	17.8	10
86	Applications of highâ€resolution magic angle spinning MRS in biomedical studies I—cell line and animal models. NMR in Biomedicine, 2017, 30, e3700.	2.8	29
87	Three-Dimensional Myoarchitecture of the Lower Esophageal Sphincter and Esophageal Hiatus Using Optical Sectioning Microscopy. Scientific Reports, 2017, 7, 13188.	3.3	32
88	Applications of highâ€resolution magic angle spinning MRS in biomedical studies Il—Human diseases. NMR in Biomedicine, 2017, 30, e3784.	2.8	27
89	A Stretchable Multimodal Sensor for Soft Robotic Applications. IEEE Sensors Journal, 2017, 17, 5678-5686.	4.7	41
90	Esophageal Peristaltic Control of a Soft-Bodied Swallowing Robot by the Central Pattern Generator. IEEE/ASME Transactions on Mechatronics, 2017, 22, 91-98.	5.8	23

#	Article	IF	CITATIONS
91	Biomimetic evaluation of bolus transit in modelled esophageal swallowing. , 2017, , .		О
92	Ambulatory gastric mucosal slow wave recording for chronic experimental studies. , 2017, 2017, 755-758.		2
93	Soft-robotic esophageal swallowing as a clinically-inspired bolus rheometry technique. Measurement Science and Technology, 2017, 28, 035701.	2.6	20
94	Actuation planning and modeling of a soft swallowing robot. , 2017, , .		2
95	Suppression of ventilation artifacts for gastrointestinal slow wave recordings. , 2017, 2017, 2769-2772.		14
96	Acute Slow Wave Responses to High-Frequency Gastric Electrical Stimulation in Patients With Gastroparesis Defined by High-Resolution Mapping. Neuromodulation, 2016, 19, 864-871.	0.8	29
97	Simultaneous anterior and posterior serosal mapping of gastric slowâ€wave dysrhythmias induced by vasopressin. Experimental Physiology, 2016, 101, 1206-1217.	2.0	15
98	Measuring and imaging of a soft-bodied swallowing robot conduit deformation and internal structural change using videofluoroscopy. , 2016, , .		2
99	Technical requirements and conceptualization of a soft pneumatic actuator inspired by human gastric motility. , 2016, , .		6
100	Conceptualisation and specification of a biologically-inspired, soft-bodied gastric robot. , 2016, , .		8
101	Iterative Covariance-Based Removal of Time-Synchronous Artifacts: Application to Gastrointestinal Electrical Recordings. IEEE Transactions on Biomedical Engineering, 2016, 63, 2262-2272.	4.2	5
102	A Nanocomposite-Based Stretchable Deformation Sensor Matrix for a Soft-Bodied Swallowing Robot. IEEE Sensors Journal, 2016, 16, 3848-3855.	4.7	14
103	Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling. American Journal of Physiology - Renal Physiology, 2016, 311, C895-C902.	3.4	71
104	The virtual intestine: <i>in silico</i> modeling of small intestinal electrophysiology and motility and the applications. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 69-85.	6.6	26
105	Characterization of Electrophysiological Propagation by Multichannel Sensors. IEEE Transactions on Biomedical Engineering, 2016, 63, 1751-1759.	4.2	15
106	A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry. Mathematical Medicine and Biology, 2015, 32, dqu023.	1.2	19
107	Detection of the Recovery Phase of in vivo gastric slow wave recordings. , 2015, 2015, 6094-7.		4
108	Measuring Gastrointestinal Electrical Activity With Extracellular Electrodes. Journal of Neurogastroenterology and Motility, 2015, 21, 623-624.	2.4	1

#	Article	IF	CITATIONS
109	Concerning the Validity of Gastrointestinal Extracellular Recordings. Physiological Reviews, 2015, 95, 691-692.	28.8	6
110	Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting. Gastroenterology, 2015, 149, 56-66.e5.	1.3	192
111	Forward Problem of Electrocardiography. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 677-684.	4.8	54
112	Biomimetic Investigation of Intrabolus Pressure Signatures by a Peristaltic Swallowing Robot. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 967-974.	4.7	19
113	Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1331-1337.	5.8	22
114	Recent progress in gastric arrhythmia: Pathophysiology, clinical significance and future horizons. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 854-862.	1.9	88
115	Automated Classification and Identification of Slow Wave Propagation Patterns in Gastric Dysrhythmia. Annals of Biomedical Engineering, 2014, 42, 177-192.	2.5	16
116	A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity. IEEE Transactions on Biomedical Engineering, 2014, 61, 2679-2687.	4.2	13
117	Design and Characterization of a Peristaltic Actuator Inspired by Esophageal Swallowing. IEEE/ASME Transactions on Mechatronics, 2014, 19, 1234-1242.	5.8	51
118	Mitochondrial calcium handling within the interstitial cells of Cajal. American Journal of Physiology - Renal Physiology, 2014, 307, G107-G121.	3.4	8
119	Central pattern generators based control of a swallowing device. , 2013, , .		0
120	Comparison of filtering methods for extracellular gastric slow wave recordings. Neurogastroenterology and Motility, 2013, 25, 79-83.	3.0	66
121	Automated Algorithm for GI Spike Burst Detection and Demonstration of Efficacy in Ischemic Small Intestine. Annals of Biomedical Engineering, 2013, 41, 2215-2228.	2.5	14
122	The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings. Journal of Physiology, 2013, 591, 4567-4579.	2.9	74
123	Cellular automaton model for simulating tissue-specific intestinal electrophysiological activity. , 2013, 2013, 5537-40.		5
124	Experimental and Automated Analysis Techniques for High-resolution Electrical Mapping of Small Intestine Slow Wave Activity. Journal of Neurogastroenterology and Motility, 2013, 19, 179-191.	2.4	37
125	A miniature bidirectional telemetry system for <i>in vivo</i> gastric slow wave recordings. Physiological Measurement, 2012, 33, N29-N37.	2.1	28
126	The gastrointestinal electrical mapping suite (GEMS): software for analyzing and visualizing high-resolution (multi-electrode) recordings in spatiotemporal detail. BMC Gastroenterology, 2012, 12. 60.	2.0	89

#	Article	IF	CITATIONS
127	Abnormal Initiation and Conduction of Slow-Wave Activity in Gastroparesis, Defined by High-Resolution Electrical Mapping. Gastroenterology, 2012, 143, 589-598.e3.	1.3	278
128	An Improved Method for the Estimation and Visualization of Velocity Fields from Gastric High-Resolution Electrical Mapping. IEEE Transactions on Biomedical Engineering, 2012, 59, 882-889.	4.2	45
129	Automated Gastric Slow Wave Cycle Partitioning and Visualization for High-resolution Activation Time Maps. Annals of Biomedical Engineering, 2011, 39, 469-483.	2.5	46
130	Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach. , 2011, 2011, 1737-40.		36
131	A miniature power-efficient bidirectional telemetric platform for in-vivo acquisition of electrophysiological signals. , 2011, , .		2
132	Falling-Edge, Variable Threshold (FEVT) Method for the Automated Detection of Gastric Slow Wave Events in High-Resolution Serosal Electrode Recordings. Annals of Biomedical Engineering, 2010, 38, 1511-1529.	2.5	68
133	Gastrointestinal system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 65-79.	6.6	99
134	Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping. American Journal of Physiology - Renal Physiology, 2010, 299, G585-G592.	3.4	233
135	High-resolution entrainment mapping of gastric pacing: a new analytical tool. American Journal of Physiology - Renal Physiology, 2010, 298, G314-G321.	3.4	61
136	Tissue-Specific Mathematical Models of Slow Wave Entrainment in Wild-Type and 5-HT2B Knockout Mice with Altered Interstitial Cells of Cajal Networks. Biophysical Journal, 2010, 98, 1772-1781.	0.5	58
137	Detailed measurements of gastric electrical activity and their implications on inverse solutions. , 2009, 2009, 1302-5.		8
138	Surface Current Density Mapping for Identification of Gastric Slow Wave Propagation. IEEE Transactions on Biomedical Engineering, 2009, 56, 2131-2139.	4.2	25
139	A novel laparoscopic device for measuring gastrointestinal slow-wave activity. Surgical Endoscopy and Other Interventional Techniques, 2009, 23, 2842-2848.	2.4	42
140	Highâ€Frequency Gastric Electrical Stimulation for the Treatment of Gastroparesis: A Metaâ€Analysis. World Journal of Surgery, 2009, 33, 1693-1701.	1.6	118
141	Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World Journal of Gastroenterology, 2007, 13, 1378.	3.3	45
142	Anatomically realistic finite element simulations of Pelvic floor mechanics. Proceedings in Applied Mathematics and Mechanics, 2007, 7, 4020031-4020032.	0.2	1
143	Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology. IEEE Transactions on Biomedical Engineering, 2003, 50, 11-22.	4.2	85
144	Effects of experimental and modeling errors on electrocardiographic inverse formulations. IEEE Transactions on Biomedical Engineering, 2003, 50, 23-32.	4.2	44