Qing Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8342792/publications.pdf

Version: 2024-02-01

		471061	839053
18	2,944 citations	17	18
papers	citations	h-index	g-index
18	18	18	3165
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801149.	10.2	442
2	CoS Quantum Dot Nanoclusters for Highâ€Energy Potassiumâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1702634.	7.8	391
3	Boosting the Potassium Storage Performance of Alloyâ€Based Anode Materials via Electrolyte Salt Chemistry. Advanced Energy Materials, 2018, 8, 1703288.	10.2	382
4	Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon, 2017, 123, 54-61.	5 . 4	257
5	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie - International Edition, 2020, 59, 3638-3644.	7.2	211
6	Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nature Communications, 2018, 9, 3645.	5.8	204
7	Cathode Materials for Potassium-Ion Batteries: Current Status and Perspective. Electrochemical Energy Reviews, 2018, 1, 625-658.	13.1	201
8	A new energy storage system: Rechargeable potassium-selenium battery. Nano Energy, 2017, 35, 36-43.	8.2	168
9	Hollow-Carbon-Templated Few-Layered V ₅ S ₈ Nanosheets Enabling Ultrafast Potassium Storage and Long-Term Cycling. ACS Nano, 2019, 13, 7939-7948.	7.3	136
10	Structural Insight into Layer Gliding and Lattice Distortion in Layered Manganese Oxide Electrodes for Potassiumâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1900568.	10.2	125
11	Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications. Small, 2019, 15, e1803858.	5. 2	99
12	Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy, 2020, 77, 105118.	8.2	82
13	Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5373-5379.	4.0	78
14	Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green Energy and Environment, 2017, 2, 278-284.	4.7	75
15	Ultrafast Li-ion migration in holey-graphene-based composites constructed by a generalized <i>ex situ</i> method towards high capacity energy storage. Journal of Materials Chemistry A, 2019, 7, 4788-4796.	5. 2	34
16	Enabling Ultrastable Alkali Metal Anodes by Artificial Solid Electrolyte Interphase Fluorination. Nano Letters, 2022, 22, 4347-4353.	4.5	24
17	Enabling Atomicâ€Scale Imaging of Sensitive Potassium Metal and Related Solid Electrolyte Interphases Using Ultralowâ€Dose Cryoâ€₹EM. Advanced Materials, 2021, 33, e2102666.	11.1	19
18	An Intrinsically Nonâ€flammable Electrolyte for Highâ€Performance Potassium Batteries. Angewandte Chemie, 2020, 132, 3667-3673.	1.6	16