Vladimir Koval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8342372/publications.pdf

Version: 2024-02-01

43 papers

1,224 citations

430874 18 h-index 377865 34 g-index

44 all docs

44 docs citations

times ranked

44

1453 citing authors

#	Article	IF	CITATIONS
1	Perovskite Bi0.5Na0.5TiO3-based materials for dielectric capacitors with ultrahigh thermal stability. Materials and Design, 2021, 198, 109344.	7.0	19
2	Temperature-dependent deformation processes in two-phase TiAlÂ+ÂTi3Al nano-polycrystalline alloys. Materials and Design, 2021, 199, 109422.	7.0	12
3	Electric field-induced transformations in bismuth sodium titanate-based materials. Progress in Materials Science, 2021, 122, 100837.	32.8	36
4	Grain Size Effects in Mn-Modified 0.67BiFeO ₃ –0.33BaTiO ₃ Ceramics. ACS Applied Materials & Discrete Substitution (13, 57548-57559).	8.0	16
5	Room-temperature multiferroic behavior in layer-structured Aurivillius phase ceramics. Applied Physics Letters, 2020, 117, .	3.3	7
6	Cobalt-induced structural modulation in multiferroic Aurivillius-phase oxides. Journal of Materials Chemistry C, 2020, 8, 8466-8483.	5.5	14
7	Ultrahigh field-induced strain in lead-free ceramics. Nano Energy, 2020, 76, 105037.	16.0	85
8	Dynamic phase fluctuations in potential-driven Bose–Einstein condensate. New Journal of Physics, 2020, 22, 013046.	2.9	0
9	Terahertz Probing Irreversible Phase Transitions Related to Polar Clusters in Bi _{0.5} Na _{0.5} TiO ₃ â€Based Ferroelectric. Advanced Electronic Materials, 2020, 6, 1901373.	5.1	10
10	Polar nano-clusters in nominally paraelectric ceramics demonstrating high microwave tunability for wireless communication. Journal of the European Ceramic Society, 2020, 40, 3996-4003.	5.7	25
11	Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces. Chinese Physics B, 2019, 28, 097501.	1.4	0
12	Electrical tuning of skyrmion dynamics in multiferroic composite thin films. Physical Review B, 2019, 100, .	3.2	6
13	On the origin of grain size effects in Ba(Ti0.96Sn0.04)O3 perovskite ceramics. Journal of the European Ceramic Society, 2019, 39, 2064-2075.	5.7	52
14	Orthoenstatite to forsterite phase transformation in magnesium germanate ceramics. Ceramics International, 2019, 45, 7878-7884.	4.8	6
15	Topological thermal Hall effect driven by spin-chirality fluctuations in frustrated antiferromagnets. Physical Review B, 2019, 99, .	3.2	19
16	Crystal structure and electrical properties of textured Ba2Bi4Ti5O18 ceramics. Journal of the European Ceramic Society, 2019, 39, 1042-1049.	5.7	17
17	Bi _{3.25} La _{0.75} Ti _{2.5} Nb _{0.25} (Fe _{0.5} Co _{0.5} a single phase room temperature multiferroic. Journal of Materials Chemistry C, 2018, 6, 2733-2740.	sub>) <sub< td=""><td>>0.25</td></sub<>	>0.25
18	Phase evolution and electrical behaviour of samarium-substituted bismuth ferrite ceramics. Journal of the European Ceramic Society, 2018, 38, 1374-1380.	5.7	15

#	Article	IF	Citations
19	Crystal Chemistry and Magnetic Properties of Gd-Substituted Aurivillius-Type Bi ₅ FeTi ₃ O ₁₅ Ceramics. Journal of Physical Chemistry C, 2018, 122, 15733-15743.	3.1	25
20	Terbium-induced phase transitions and weak ferromagnetism in multiferroic bismuth ferrite ceramics. Journal of Materials Chemistry C, 2017, 5, 2669-2685.	5.5	32
21	Development of Al 2 O 3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination. Applied Surface Science, 2017, 415, 90-98.	6.1	27
22	Lead free Bi 3 TaTiO 9 ferroelectric ceramics with high Curie point. Materials Letters, 2016, 175, 79-81.	2.6	13
23	Room temperature magnetoelectric coupling in intrinsic multiferroic Aurivillius phase textured ceramics. Dalton Transactions, 2016, 45, 14049-14052.	3.3	20
24	Tuning the electrocaloric enhancement near the morphotropic phase boundary in lead-free ceramics. Scientific Reports, 2016, 6, 28251.	3.3	52
25	Preparation and physical properties of M-type hexaferrite SrCo2Ti2Fe8O19. Ferroelectrics, 2016, 499, 1-8.	0.6	4
26	Unfolding grain size effects in barium titanate ferroelectric ceramics. Scientific Reports, 2015, 5, 9953.	3.3	227
27	Lowâ€Temperature Magnetic and Dielectric Anomalies in Rareâ€Earthâ€Substituted <scp><scp>BiFeO</scp></scp> 3 Ceramics. Journal of the American Ceramic Society, 2014, 97, 3729-3732.	3.8	4
28	Effect of dysprosium substitution on crystal structure and physical properties of multiferroic BiFeO3 ceramics. Journal of the European Ceramic Society, 2014, 34, 641-651.	5.7	65
29	Lithium-Induced Phase Transitions in Lead-Free Bi _{0.5} Na _{0.5} TiO ₃ Based Ceramics. Journal of Physical Chemistry C, 2014, 118, 8564-8570.	3.1	152
30	Dielectrophoretic assembly of lead zirconate titanate microtubes. Solid State Communications, 2011, 151, 1990-1993.	1.9	2
31	Effect of Ce and La substitution on dielectric properties of bismuth titanate ceramics. Ceramics International, 2011, 37, 487-492.	4.8	40
32	Mist Deposited Lead Zirconate Titanate Films. Ferroelectrics, 2011, 421, 23-29.	0.6	1
33	Lead zirconate titanate films prepared by liquid source misted chemical deposition. Metallic Materials, 2010, 48, 361-365.	0.3	1
34	Enhanced ferroelectric loop asymmetry of lead zirconate titanate thin films under nanoindentation. Journal of Applied Physics, 2007, 101, 024113.	2.5	8
35	Local switching behavior and electrical polarization of ferroelectric thin films under nanoindentation. Journal of the European Ceramic Society, 2007, 27, 4403-4406.	5 . 7	1
36	Ferroelectric/ferroelastic behavior and piezoelectric response of lead zirconate titanate thin films under nanoindentation. Journal of Applied Physics, 2005, 97, 074301.	2.5	29

#	Article	lF	CITATIONS
37	Relaxation Processes in Dielectric and Electromechanical Response of PZT Thin Films Under Nanoindentation. Ferroelectrics, 2005, 318, 55-61.	0.6	4
38	Dielectric Properties and Phase Transition Behavior of xPMN-(1 \hat{a}^{*} x)PZT Ceramic Systems. , 2003, 10, 19-29.		56
39	Effect of PMN modification on structure and electrical response of xPMN–(1â^x)PZT ceramic systems. Journal of the European Ceramic Society, 2003, 23, 1157-1166.	5.7	81
40	Low-temperature spontaneous polarization. Ferroelectrics, 2000, 237, 135-143.	0.6	0
41	Effect of poling process on the piezoelectric and dielectric properties of Nb and Sr-doped PZT ceramics. Ferroelectrics, 1997, 193, 41-49.	0.6	12
42	Biasing Effects in Ferroic Materials. , 0, , .		10
43	Fe/MgO Powder Composite Sintered by Microwave Heating. , 0, , .		0