Pawel Sokolowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8342082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The key process parameters influencing formation of columnar microstructure in suspension plasma sprayed zirconia coatings. Surface and Coatings Technology, 2014, 260, 97-106.	4.8	80
2	Review of Functionally Graded Thermal Sprayed Coatings. Applied Sciences (Switzerland), 2020, 10, 5153.	2.5	58
3	Advanced Microscopic Study of Suspension Plasma-Sprayed Zirconia Coatings with Different Microstructures. Journal of Thermal Spray Technology, 2016, 25, 94-104.	3.1	43
4	Development of hydroxyapatite coatings by solution precursor plasma spray process and their microstructural characterization. Surface and Coatings Technology, 2017, 318, 39-49.	4.8	38
5	Influence of 13Âwt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surface and Coatings Technology, 2021, 410, 126979.	4.8	32
6	The microstructural studies of suspension plasma sprayed zirconia coatings with the use of high-energy plasma torches. Surface and Coatings Technology, 2017, 318, 250-261.	4.8	22
7	Microstructural, mechanical and tribological properties of finely grained Al2O3 coatings obtained by SPS and S-HVOF methods. Surface and Coatings Technology, 2020, 404, 126463.	4.8	22
8	Wear Behavior Analysis of Al2O3 Coatings Manufactured by APS and HVOF Spraying Processes Using Powder and Suspension Feedstocks. Coatings, 2021, 11, 879.	2.6	20
9	Characterization of microstructure and thermal properties of YCSZ coatings obtained by suspension plasma spraying. Surface and Coatings Technology, 2015, 268, 147-152.	4.8	18
10	Thermophysical properties of YSZ and YCeSZ suspension plasma sprayed coatings having different microstructures. Surface and Coatings Technology, 2017, 318, 28-38.	4.8	17
11	Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates. Journal of Thermal Spray Technology, 2017, 26, 1787-1803.	3.1	15
12	The Microstructure and Selected Mechanical Properties of Al2O3 + 13 wt % TiO2 Plasma Sprayed Coatings. Coatings, 2020, 10, 173.	2.6	14
13	A Study on the Microstructural Characterization and Phase Compositions of Thermally Sprayed Al2O3-TiO2 Coatings Obtained from Powders and Water-Based Suspensions. Materials, 2020, 13, 2638.	2.9	12
14	Development of Resistance Spot Welding Processes of Metal–Plastic Composites. Materials, 2021, 14, 3233.	2.9	11
15	Computational image analysis of Suspension Plasma Sprayed YSZ coatings. ITM Web of Conferences, 2017, 15, 06004.	0.5	9
16	Study on Geometry, Dimensional Accuracy and Structure of Parts Produced by Multi Jet Fusion. Materials, 2021, 14, 4510.	2.9	9
17	TRIBOLOGICAL PROPERTIES OF Al2O3 + TiO2 COATINGS MANUFACTURED BY PLASMA SPRAYING. Tribologia, 2019, 283, 19-24.	0.2	9
18	The Detectability of Welding Defects in MIAB Welded Thin-Walled Tubular Components by Immersion Ultrasonic Technique. Journal of Nondestructive Evaluation, 2020, 39, 1.	2.4	8

#	Article	IF	CITATIONS
19	Study on the Characteristics of a TBC System Containing a PVD-Al Interlayer under Isothermal Loading. Coatings, 2021, 11, 887.	2.6	6
20	Al ₂ O ₃ -TiO ₂ coatings deposition by intermixed and double injection SPS concepts. Materials Science-Poland, 2021, 39, 599-614.	1.0	3
21	Application of Plasma Sprayed Cu Intermediate Layers in the Soldering Process of Graphite Composite to 6060 Aluminum Alloy. Materials, 2020, 13, 5114.	2.9	1
22	tendencje rozwojowe zgrzewania Å,ukiem wirujÄcym w aspekcie zastosowaÅ,, w przemyÅ›le motoryzacyjnym. PrzeglÄd Spawalnictwa, 2015, 85, .	0.5	1
23	Zautomatyzowane stanowisko do badaÅ" ultradÅ⁰wiÄ™kowych poÅ,Ä…czeÅ" zgrzewanych Å,ukiem wirujÄ…cym Spawalnictwa, 2017, 89, .	. PrzeglÄ 0.5	d