M Laura Laura Soriano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8341990/publications.pdf

Version: 2024-02-01

53 papers

2,019 citations

257101 24 h-index 233125 45 g-index

56 all docs 56
docs citations

56 times ranked 2843 citing authors

#	Article	IF	Citations
1	Design of a 3D interfacial SERS liquid sensing platform based on Au-nanobones for discrimination and quantitation of quercetin loaded nanoemulsions. Sensors and Actuators B: Chemical, 2022, 358, 131509.	4.0	6
2	Passivated graphene quantum dots for carbaryl determination in juices. Journal of Separation Science, 2021, 44, 1652-1661.	1.3	4
3	A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions. Nanomaterials, 2021, 11, 1265.	1.9	25
4	Cyclodextrin-modified graphene quantum dots as a novel additive for the selective separation of bioactive compounds by capillary electrophoresis. Mikrochimica Acta, 2021, 188, 440.	2. 5	7
5	Heracleum Persicum based biosorbent for the removal of paraquat and diquat from waters. Journal of Environmental Chemical Engineering, 2020, 8, 104481.	3.3	15
6	Discrimination between nanocurcumin and free curcumin using graphene quantum dots as a selective fluorescence probe. Mikrochimica Acta, 2020, 187, 446.	2.5	15
7	Carbon-based nanodots as effective electrochemical sensing tools toward the simultaneous detection of bioactive compounds in complex matrices. Journal of Electroanalytical Chemistry, 2020, 878, 114573.	1.9	10
8	A Systematic Comparative Study of the Toxicity of Semiconductor and Graphitic Carbon-Based Quantum Dots Using In Vitro Cell Models. Applied Sciences (Switzerland), 2020, 10, 8845.	1.3	5
9	Cotton fibers functionalized with \hat{l}^2 -cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples. Analytica Chimica Acta, 2020, 1126, 133-143.	2.6	14
10	Ultrafast spectroscopic investigation on fluorescent carbon nanodots: the role of passivation. Physical Chemistry Chemical Physics, 2019, 21, 16459-16467.	1.3	19
11	Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. Journal of Environmental Chemical Engineering, 2019, 7, 103424.	3.3	15
12	Graphene quantum dots for enhancement of fluorimetric detection coupled to capillary electrophoresis for detection of ofloxacin. Electrophoresis, 2019, 40, 2336-2341.	1.3	27
13	Ionic-liquid-based microextraction method for the determination of silver nanoparticles in consumer products. Analytical and Bioanalytical Chemistry, 2019, 411, 5023-5031.	1.9	12
14	Analytical reliability of simple, rapid, minuturizated, direct analytical processes: A call to arms. TrAC - Trends in Analytical Chemistry, 2019, 114, 98-107.	5 . 8	11
15	Recycling Oxacillin Residues from Environmental Waste into Graphene Quantum Dots. Journal of Carbon Research, 2019, 5, 68.	1.4	3
16	Cyclodextrin-modified nanodiamond for the sensitive fluorometric determination of doxorubicin in urine based on its differential affinity towards \hat{l}^2/\hat{l}^3 -cyclodextrins. Mikrochimica Acta, 2018, 185, 115.	2. 5	19
17	Modified nanocellulose as promising material for the extraction of gold nanoparticles. Microchemical Journal, 2018, 138, 379-383.	2.3	16
18	Analytical Nanoscience and Nanotechnology: Where we are and where we are heading. Talanta, 2018, 177, 104-121.	2.9	56

#	Article	lF	Citations
19	Bases nanotecnológicas de una «nueva» NefrologÃa. Nefrologia, 2018, 38, 368-378.	0.2	4
20	Nanotechnological foundations of a "new―Nephrology. Nefrologia, 2018, 38, 362-372.	0.2	4
21	Promising Sensing Platforms Based on Nanocellulose. Springer Series on Chemical Sensors and Biosensors, 2018, , 273-301.	0.5	8
22	One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly <i>via</i> a novel microwave-assisted method: impact on triazine removal and efficiency monitoring. RSC Advances, 2018, 8, 29939-29946.	1.7	35
23	Moving into Nanotechnology Roles to Mimic and Boost Enzyme Activity. Advances in Medical Technologies and Clinical Practice Book Series, 2018, , 421-440.	0.3	1
24	Photoluminescent sensing hydrogel platform based on the combination of nanocellulose and S,N-codoped graphene quantum dots. Sensors and Actuators B: Chemical, 2017, 245, 946-953.	4.0	80
25	Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase. Analytica Chimica Acta, 2017, 974, 93-99.	2.6	83
26	Detection of nanocellulose in commercial products and its size characterization using asymmetric flow field-flow fractionation. Mikrochimica Acta, 2017, 184, 1069-1076.	2.5	10
27	Different natures of surface electronic transitions of carbon nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22670-22677.	1.3	37
28	Nanocellulose as analyte and analytical tool: Opportunities and challenges. TrAC - Trends in Analytical Chemistry, 2017, 87, 1-18.	5.8	59
29	Carbon nanotools as sorbents and sensors of nanosized objects: The third way of analytical nanoscience and nanotechnology. TrAC - Trends in Analytical Chemistry, 2016, 84, 172-180.	5.8	25
30	Pharmaceutical crystallization with nanocellulose organogels. Chemical Communications, 2016, 52, 7782-7785.	2.2	35
31	Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta, 2016, 151, 100-105.	2.9	112
32	One-Step Synthesis and Characterization of N-Doped Carbon Nanodots for Sensing in Organic Media. Analytical Chemistry, 2016, 88, 3178-3185.	3.2	39
33	\hat{l}^2 -Cyclodextrin functionalized carbon quantum dots as sensors for determination of water-soluble C ₆₀ fullerenes in water. Analyst, The, 2016, 141, 2682-2687.	1.7	24
34	Gels based on nanocellulose with photosensitive ruthenium bipyridine moieties as sensors for silver nanoparticles in real samples. Sensors and Actuators B: Chemical, 2016, 229, 31-37.	4.0	35
35	Semiconductor and carbon-based fluorescent nanodots: the need for consistency. Chemical Communications, 2016, 52, 1311-1326.	2.2	389
36	Sulfonated nanocellulose for the efficient dispersive micro solid-phase extraction and determination of silver nanoparticles in food products. Journal of Chromatography A, 2016, 1428, 352-358.	1.8	51

#	Article	IF	Citations
37	Reusable sensor based on functionalized carbon dots for the detection of silver nanoparticles in cosmetics via inner filter effect. Analytica Chimica Acta, 2015, 872, 70-76.	2.6	79
38	Fluorescent carbon dot–molecular salt hydrogels. Chemical Science, 2015, 6, 6139-6146.	3.7	95
39	\hat{l}^2 -Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst, The, 2015, 140, 3431-3438.	1.7	50
40	Photoluminescent carbon dot sensor for carboxylated multiwalled carbon nanotube detection in river water. Sensors and Actuators B: Chemical, 2015, 207, 596-601.	4.0	45
41	Functionalized carbon dots as sensors for gold nanoparticles in spiked samples: Formation of nanohybrids. Analytica Chimica Acta, 2014, 820, 133-138.	2.6	55
42	Analysis of citrate-capped gold and silver nanoparticles by thiol ligand exchange capillary electrophoresis. Mikrochimica Acta, 2014, 181, 1789-1796.	2.5	31
43	Ternary composites of nanocellulose, carbonanotubes and ionic liquids as new extractants for direct immersion single drop microextraction. Talanta, 2014, 125, 72-77.	2.9	49
44	Strong luminescence of Carbon Dots induced by acetone passivation: Efficient sensor for a rapid analysis of two different pollutants. Analytica Chimica Acta, 2013, 804, 246-251.	2.6	81
45	Zn ^{II} â€Cyclen as a Supramolecular Probe for Tagging Thymidine Nucleosides on Carbon Nanotubes. European Journal of Organic Chemistry, 2013, 2013, 3685-3690.	1.2	4
46	Enhanced Anion Binding from Unusual Coordination Modes of Bis(thiourea) Ligands in Platinum Group Metal Complexes. Chemistry - A European Journal, 2010, 16, 10818-10831.	1.7	17
47	New $[2\ ilde{A}-2]$ Copper(I) Grids as Anion Receptors. Effect of Ligand Functionalization on the Ability to Host Counteranions by Hydrogen Bonds. Inorganic Chemistry, 2010, 49, 8828-8847.	1.9	28
48	Synthesis and characterization of Ru(arene) complexes of bispyrazolylazines: Catalytic hydrogen transfer of ketones. Inorganica Chimica Acta, 2009, 362, 4486-4492.	1.2	23
49	Multiple Hydrogen Bonds in the Self-Assembly of Aminotriazine and Glutarimide. Decisive Role of the Triazine Substituents. Crystal Growth and Design, 2008, 8, 1585-1594.	1.4	22
50	Anion-Dependent Self-Assembly of Silver(I) and Diaminotriazines to Coordination Polymers: Non-Covalent Bonds and Role Interchange between Silver and Hydrogen Bonds. Inorganic Chemistry, 2008, 47, 8957-8971.	1.9	60
51	Self-assembly of Ligands Designed for the Building of a New Type of [2 × 2] Metallic Grid. Anion Encapsulation and Diffusion NMR Spectroscopy. Inorganic Chemistry, 2008, 47, 413-428.	1.9	64
52	Bis-Azolylazine Derivatives as Supramolecular Synthons for Copper and Silver $[2\tilde{A}-2]$ Grids and Coordination Polymers. , 0, , 57-91.		3
53	One-dimensional heterostructure: The selective decoration of single-walled carbon nanotube tips with metallic nanoparticles. MRS Bulletin, 0, , .	1.7	O