Wuliji Hasi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8341927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Assembly of Faceted Gold Nanocrystals for Surface-Enhanced Raman Scattering Application. Journal of Physical Chemistry C, 2019, 123, 24714-24722.	3.1	60
2	Lab-On-Capillary Platform for On-Site Quantitative SERS Analysis of Surface Contaminants Based on Au@4-MBA@Ag Core–Shell Nanorods. ACS Sensors, 2020, 5, 1465-1473.	7.8	57
3	Self-assembly of Au@Ag core–shell nanocubes embedded with an internal standard for reliable quantitative SERS measurements. Analytical Methods, 2018, 10, 4201-4208.	2.7	51
4	Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core–shell nanospheres for reliable quantitative SERS measurements. Analytica Chimica Acta, 2020, 1108, 167-176.	5.4	41
5	A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Analytical Methods, 2020, 12, 2571-2579.	2.7	38
6	Facile Synthesis of Monodisperse Silver Nanospheres in Aqueous Solution via Seed-Mediated Growth Coupled with Oxidative Etching. Langmuir, 2018, 34, 6077-6084.	3.5	36
7	Width and length dependent SERS performance of core-shell Au@Ag nanorod self-assembled monolayers. Journal of Alloys and Compounds, 2019, 805, 318-326.	5.5	34
8	A silver selfâ€assembled monolayerâ€decorated polydimethylsiloxane flexible substrate for in situ SERS detection of lowâ€abundance molecules. Journal of Raman Spectroscopy, 2018, 49, 1469-1477.	2.5	32
9	Fabrication of flexible paperâ€based Surfaceâ€enhanced Raman scattering substrate from Au nanocubes monolayer for trace detection of crystal violet on shell. Journal of Raman Spectroscopy, 2019, 50, 1074-1084.	2.5	30
10	Highly monodisperse Au@Ag nanospheres: synthesis by controlled etching route and size-dependent SERS performance of their surperlattices. Nanotechnology, 2019, 30, 215601.	2.6	27
11	Binary Plasmonic Assembly Films with Hotspot-Type-Dependent Surface-Enhanced Raman Scattering Properties. ACS Applied Materials & Interfaces, 2021, 13, 53289-53299.	8.0	26
12	<i>In situ</i> analysis of pesticide residues on the surface of agricultural products <i>via</i> surface-enhanced Raman spectroscopy using a flexible Au@Ag–PDMS substrate. New Journal of Chemistry, 2019, 43, 13075-13082.	2.8	23
13	Surface-enhanced Raman spectroscopy for rapid identification and quantification of Flibanserin in different kinds of wine. Analytical Methods, 2020, 12, 3025-3031.	2.7	20
14	Rapid Detection of Sildenafil Drugs in Liquid Nutraceuticals Based on Surfaceâ€Enhanced Raman Spectroscopy Technology. Chinese Journal of Chemistry, 2017, 35, 1522-1528.	4.9	19
15	Sensitive and reliable identification of fentanyl citrate in urine and serum using chloride ion-treated paper-based SERS substrate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119463.	3.9	17
16	Characterization of a Chloride-Activated Surface Complex and Corresponding Enhancement Mechanism by SERS Saturation Effect. Journal of Physical Chemistry C, 2017, 121, 950-957.	3.1	15
17	Preparation of a highâ€performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods selfâ€assembled to detect pesticide residues. Journal of Raman Spectroscopy, 2019, 50, 1679-1690.	2.5	13
18	Detection of Chlortetracycline Hydrochloride in Milk with a Solid SERS Substrate Based on Self-assembled Gold Nanobipyramids. Analytical Sciences, 2020, 36, 935-940.	1.6	11

Wuliji Hasi

#	Article	IF	CITATIONS
19	A novel suitable TLC-SERS assembly strategy for detection of Rhodamine B and Sudan I in chili oil. Food Control, 2022, 138, 109040.	5.5	11
20	Fabrication of an AAO-based surface-enhanced Raman scattering substrate for the identification of levofloxacin in milk. New Journal of Chemistry, 2021, 45, 7571-7577.	2.8	9
21	Quantitative SERS measurements by self-assembled ultra-smooth Au nanosphere superlattice with embedded internal reference. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	7
22	Self-assembly of Large-scale Two-dimensional Plasmonic Superlattices Based on Single-Crystal Au Nanospheres and the FDTD Simulation of Its Optical Properties. Plasmonics, 2018, 13, 1749-1758.	3.4	6
23	Effective SERS method for identification of dexmedetomidine hydrochloride in biological samples. Analytical Methods, 2020, 12, 1662-1669.	2.7	5
24	Detection of Alternative Drugs for Illegal Injection Based on Surface-Enhanced Raman Spectroscopy. Journal of Spectroscopy, 2019, 2019, 1-5.	1.3	4
25	Erratum to "Detection of Alternative Drugs for Illegal Injection Based on Surface-Enhanced Raman Spectroscopy― Journal of Spectroscopy, 2021, 2021, 1-1.	1.3	0