Wen-Shan Tan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8341822/publications.pdf

Version: 2024-02-01

		1162367	1125271
19	468	8	13
papers	citations	h-index	g-index
19	19	19	539
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Artificial Intelligence Applications in Estimating Invisible Solar Power Generation. Energies, 2022, 15, 1312.	1.6	7
2	A twoâ€stage multi microgrids p2p energy trading with motivational gameâ€theory: A case study in malaysia. IET Renewable Power Generation, 2021, 15, 2615-2628.	1.7	16
3	Cascading Failures Assessment in Renewable Integrated Power Grids Under Multiple Faults Contingencies. IEEE Access, 2021, 9, 82272-82287.	2.6	13
4	Probabilistic Load Flow–Based Optimal Placement and Sizing of Distributed Generators. Energies, 2021, 14, 7857.	1.6	3
5	Dual-timescale generation scheduling with nondeterministic flexiramp including demand response and energy storage. Electric Power Systems Research, 2020, 189, 106821.	2.1	3
6	A rule-based energy management scheme for long-term optimal capacity planning of grid-independent microgrid optimized by multi-objective grasshopper optimization algorithm. Energy Conversion and Management, 2020, 221, 113161.	4.4	109
7	Flexible Power System Defense Strategies in an Isolated Microgrid System with High Renewable Power Generation. Applied Sciences (Switzerland), 2020, 10, 3184.	1.3	5
8	Motivational Game-Theory P2P Energy Trading: A Case Study in Malaysia. , 2020, , .		4
9	Stochastic generation scheduling with variable renewable generation: methods, applications, and future trends. IET Generation, Transmission and Distribution, 2019, 13, 1467-1480.	1.4	8
10	A multi-timescale hybrid stochastic/deterministic generation scheduling framework with flexiramp and cycliramp costs. International Journal of Electrical Power and Energy Systems, 2018, 99, 585-593.	3.3	5
11	Economics- and Reliability-Based Design for an Offshore Wind Farm. IEEE Transactions on Industry Applications, 2017, 53, 5139-5149.	3.3	38
12	Chanceâ€constrained programming for dayâ€ahead scheduling of variable wind power amongst conventional generation mix and energy storage. IET Renewable Power Generation, 2017, 11, 1785-1793.	1.7	15
13	Day-ahead scheduling of wind generation and energy storage. , 2017, , .		O
14	A day-ahead generation scheduling with demand response considering thermal cycling ramp., 2017,,.		0
15	A day-ahead generation scheduling with energy storage considering cycling ramp costs. , 2016, , .		1
16	A Hybrid Stochastic/Deterministic Unit Commitment Based on Projected Disjunctive MILP Reformulation. IEEE Transactions on Power Systems, 2016, 31, 5200-5201.	4.6	18
17	Ranking of power system contingencies based on a risk quantification criterion. , 2015, , .		3
18	Hybrid stochastic/deterministic unit commitment with wind power generation. , 2015, , .		5

#	Article	IF	CITATIONS
19	Optimal distributed renewable generation planning: A review of different approaches. Renewable and Sustainable Energy Reviews, 2013, 18, 626-645.	8.2	215