Alfonso Clemente

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8341675/publications.pdf Version: 2024-02-01

ALEONSO CLEMENTE

#	Article	IF	CITATIONS
1	6th International Conference on Food Digestion. Food Research International, 2021, 144, 110354.	2.9	0
2	Dogs' Microbiome From Tip to Toe. Topics in Companion Animal Medicine, 2021, 45, 100584.	0.4	16
3	Narrow-Leafed Lupin (Lupinus angustifolius L.) Seeds Gamma-Conglutin is an Anti-Inflammatory Protein Promoting Insulin Resistance Improvement and Oxidative Stress Amelioration in PANC-1 Pancreatic Cell-Line. Antioxidants, 2020, 9, 12.	2.2	23
4	Prebiotic Properties of Non-Fructosylated α-Galactooligosaccharides from PEA (Pisum sativum L.) Using Infant Fecal Slurries. Foods, 2020, 9, 921.	1.9	13
5	Editorial: Legumes for Global Food Security. Frontiers in Plant Science, 2020, 11, 926.	1.7	14
6	Introduction to the Special Issue: Legumes as Food Ingredient: Characterization, Processing, and Applications. Foods, 2020, 9, 1525.	1.9	9
7	A Pea (Pisum sativum L.) Seed Vicilins Hydrolysate Exhibits PPARÎ ³ Ligand Activity and Modulates Adipocyte Differentiation in a 3T3-L1 Cell Culture Model. Foods, 2020, 9, 793.	1.9	10
8	Glycation affects differently the main soybean Bowman–Birk isoinhibitors, IBB1 and IBBD2, altering their antiproliferative properties against HT29 colon cancer cells. Food and Function, 2019, 10, 6193-6202.	2.1	8
9	INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 2019, 14, 991-1014.	5.5	1,873
10	Narrow-leafed lupin (<i>Lupinus angustifolius</i> L.) seed β-conglutins reverse the induced insulin resistance in pancreatic cells. Food and Function, 2018, 9, 5176-5188.	2.1	9
11	A Galacto-Oligosaccharides Preparation Derived From Lactulose Protects Against Colorectal Cancer Development in an Animal Model. Frontiers in Microbiology, 2018, 9, 2004.	1.5	66
12	Beneficial effects of legumes in gut health. Current Opinion in Food Science, 2017, 14, 32-36.	4.1	56
13	Oneâ€year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environmental Microbiology, 2017, 19, 1536-1551.	1.8	54
14	Changes in Caprine Milk Oligosaccharides at Different Lactation Stages Analyzed by High Performance Liquid Chromatography Coupled to Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2017, 65, 3523-3531.	2.4	32
15	Aspectos de las legumbres nutricionales y beneficiosos para la salud humana. Arbor, 2016, 192, a313.	0.1	10
16	The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 2016, 88, 217-225.	2.9	180
17	Characterization of goat colostrum oligosaccharides by nano-liquid chromatography on chip quadrupole time-of-flight mass spectrometry and hydrophilic interaction liquid chromatography-quadrupole mass spectrometry. Journal of Chromatography A, 2016, 1428, 143-153.	1.8	48
18	Relationship between Glycation and Polyphenol Content and the Bioactivity of Selected Commercial Soy Milks. Journal of Agricultural and Food Chemistry, 2016, 64, 1823-1830.	2.4	14

ALFONSO CLEMENTE

#	Article	IF	CITATIONS
19	Pea (<i>Pisum sativum</i> L.) seed albumin extracts show antiâ€inflammatory effect in the DSS model of mouse colitis. Molecular Nutrition and Food Research, 2015, 59, 807-819.	1.5	66
20	The protective role of the Bowman-Birk protease inhibitor in soybean lunasin digestion: the effect of released peptides on colon cancer growth. Food and Function, 2015, 6, 2626-2635.	2.1	38
21	Eliminating Anti-Nutritional Plant Food Proteins: The Case of Seed Protease Inhibitors in Pea. PLoS ONE, 2015, 10, e0134634.	1.1	37
22	Healthy effects of prebiotics and their metabolites against intestinal diseases and colorectal cancer. AIMS Microbiology, 2015, 1, 48-71.	1.0	30
23	Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World Journal of Gastroenterology, 2014, 20, 10305.	1.4	78
24	Use of phytochemomics to evaluate the bioavailability and bioactivity of antioxidant peptides of soybean βâ€conglycinin. Electrophoresis, 2014, 35, 1582-1589.	1.3	42
25	Quantitative determination of active Bowman-Birk isoinhibitors, IBB1 and IBBD2, in commercial soymilks. Food Chemistry, 2014, 155, 24-30.	4.2	12
26	Characterization of pea (<i>Pisum sativum</i>) seed protein fractions. Journal of the Science of Food and Agriculture, 2014, 94, 280-287.	1.7	92
27	Galacto-oligosaccharides Derived from Lactulose Exert a Selective Stimulation on the Growth of Bifidobacterium animalis in the Large Intestine of Growing Rats. Journal of Agricultural and Food Chemistry, 2013, 61, 7560-7567.	2.4	61
28	Analysis of the early life treatment to kids with a halogenated methane analogue additive on immunoglobulin G levels. Proceedings of the Nutrition Society, 2013, 72, .	0.4	0
29	Monomer and Linkage Type of Galacto-Oligosaccharides Affect Their Resistance to Ileal Digestion and Prebiotic Properties in Rats. Journal of Nutrition, 2012, 142, 1232-1239.	1.3	87
30	The anti-proliferative effect of TI1B, a major Bowman–Birk isoinhibitor from pea (<i>Pisum) Tj ETQq0 0 0 rgB Nutrition, 2012, 108, S135-S144.</i>	T /Overlock 1.2	10 Tf 50 307 59
31	Preliminary study on the effect of early life treatment to kids with an antimethanogenic additive. Proceedings of the Nutrition Society, 2011, 70, .	0.4	1
32	Characterization of galactooligosaccharides derived from lactulose. Journal of Chromatography A, 2011, 1218, 7691-7696.	1.8	47
33	Assessment of the lupin seed glucose-lowering protein intestinal absorption by using in vitro and ex vivo models. Food Chemistry, 2011, 125, 1279-1283.	4.2	31
34	Digestibility and immunoreactivity of soybean β-conglycinin and its deglycosylated form. Food Chemistry, 2011, 129, 1598-1605.	4.2	37
35	Bowman-Birk Inhibitors from Legumes and Human Gastrointestinal Health: Current Status and Perspectives. Current Protein and Peptide Science, 2011, 12, 358-373.	0.7	51
36	The cytotoxic effect of Bowman–Birk isoinhibitors, IBB1 and IBBD2, from soybean (<i>Glycine max</i>) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Molecular Nutrition and Food Research, 2010, 54, 396-405.	1.5	78

#	Article	IF	CITATIONS
37	Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterisation and anti-proliferative properties in human colon cancer cells. Food Chemistry, 2010, 120, 1058-1066.	4.2	51
38	ORIGINAL ARTICLE: Molecular size distribution affects portal absorption rate of casein amino acids in rats. Journal of Animal Physiology and Animal Nutrition, 2010, 94, e145-e153.	1.0	6
39	<i>In vivo</i> (rat) and <i>in vitro</i> (Caco-2 cells) absorption of amino acids from legume protein isolates as compared to lactalbumin or casein. Archives of Animal Nutrition, 2009, 63, 413-426.	0.9	9
40	Anti-carcinogenic soyabean Bowman–Birk inhibitors survive faecal fermentation in their active form and do not affect the microbiota composition in vitro. British Journal of Nutrition, 2009, 101, 967-971.	1.2	27
41	Active Bowman–Birk inhibitors survive gastrointestinal digestion at the terminal ileum of pigs fed chickpeaâ€based diets. Journal of the Science of Food and Agriculture, 2008, 88, 513-521.	1.7	38
42	2S Albumin Storage Proteins: What Makes them Food Allergens?. The Open Biochemistry Journal, 2008, 2, 16-28.	0.3	180
43	Uptake of 2S Albumin Allergens, Ber e 1 and Ses i 1, across Human Intestinal Epithelial Caco-2 Cell Monolayers. Journal of Agricultural and Food Chemistry, 2006, 54, 8631-8639.	2.4	53
44	Recovery at the terminal ileum of some legume non-nutritional factors in cannulated pigs. Journal of the Science of Food and Agriculture, 2006, 86, 979-987.	1.7	12
45	Biological Significance of Polymorphism in Legume Protease Inhibitors from the Bowman-Birk Family. Current Protein and Peptide Science, 2006, 7, 201-216.	0.7	66
46	The Tomato NBARC-LRR Protein Prf Interacts with Pto Kinase in Vivo to Regulate Specific Plant Immunity. Plant Cell, 2006, 18, 2792-2806.	3.1	239
47	Pea (Pisum sativumL.) Protease Inhibitors from the Bowmanâ^Birk Class Influence the Growth of Human Colorectal Adenocarcinoma HT29 Cellsin Vitro. Journal of Agricultural and Food Chemistry, 2005, 53, 8979-8986.	2.4	70
48	The effect of variation within inhibitory domains on the activity of pea protease inhibitors from the Bowman?Birk class. Protein Expression and Purification, 2004, 36, 106-106.	0.6	0
49	The effect of variation within inhibitory domains on the activity of pea protease inhibitors from the Bowman–Birk class. Protein Expression and Purification, 2004, 36, 106-114.	0.6	32
50	Use of the indirect competitive ELISA for the detection of Brazil nut in food products. Food Control, 2004, 15, 65-69.	2.8	39
51	Anticarcinogenic Properties of Plant Protease Inhibitors from the Bowman-Birk Class. , 2003, , 429-431.		Ο
52	Alcalase Rapeseed Inhibitors: Purification and Partial Characterization. Journal of Enzyme Inhibition and Medicinal Chemistry, 2001, 16, 81-87.	0.5	0
53	Obtention and uses of protein hydrolysates. Grasas Y Aceites, 2001, 52, .	0.3	8
54	Factors affecting thein vitro protein digestibility of chickpea albumins. Journal of the Science of Food and Agriculture, 2000, 80, 79-84.	1.7	68

ALFONSO CLEMENTE

#	Article	IF	CITATIONS
55	Sunflower protein hydrolysates for dietary treatment of patients with liver failure. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 121-126.	0.8	27
56	Effect of Alcalaseâ,,¢on olive pomace protein extraction. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 181-185.	0.8	13
57	Partially hydrolyzed rapeseed protein isolates with improved functional properties. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 447-450.	0.8	155
58	Enzymatic protein hydrolysates in human nutrition. Trends in Food Science and Technology, 2000, 11, 254-262.	7.8	399
59	Purification and Characterization of Broad Bean Lipoxygenase Isoenzymes. Journal of Agricultural and Food Chemistry, 2000, 48, 1070-1075.	2.4	31
60	Protein isolates from chickpea (Cicer arietinum L.): chemical composition, functional properties and protein characterization. Food Chemistry, 1999, 64, 237-243.	4.2	227
61	Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates. Food Chemistry, 1999, 67, 269-274.	4.2	103
62	Production and characterization of an extensive rapeseed protein hydrolysate. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 819-823.	0.8	81
63	Peptide characteristics of sunflower protein hydrolysates. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 1455-1460.	0.8	58
64	Interaction of Chickpea (Cicer arietinumL.) Legumin with Oxidized Linoleic Acid. Journal of Agricultural and Food Chemistry, 1999, 47, 813-818.	2.4	14
65	Production of Extensive Chickpea (Cicer arietinumL.) Protein Hydrolysates with Reduced Antigenic Activity. Journal of Agricultural and Food Chemistry, 1999, 47, 3776-3781.	2.4	66
66	Purification and Partial Characterization of Chickpea 2S Albumin. Journal of Agricultural and Food Chemistry, 1999, 47, 1405-1409.	2.4	43
67	Production of an extensive sunflower protein hydrolysate by sequential hydrolysis with endo- and exo-proteases Grasas Y Aceites, 1999, 50, 472-476.	0.3	40
68	Effect of cooking on protein quality of chickpea (Cicer arietinum) seeds. Food Chemistry, 1998, 62, 1-6.	4.2	70
69	Effect of processing on water absorption and softening kinetics in chickpea (Cicer arietinumL) seeds. Journal of the Science of Food and Agriculture, 1998, 78, 169-174.	1.7	29
70	Neutral lipids of chickpea flour and protein isolates. JAOCS, Journal of the American Oil Chemists' Society, 1998, 75, 851-855.	0.8	7
71	Polar lipids of defatted chickpea (Cicer arietinum L.) flour and protein isolates. Food Chemistry, 1998, 63, 357-361.	4.2	30
72	Comparative Study of Chickpea and Pea Pa2 Albumins. Journal of Agricultural and Food Chemistry, 1998, 46, 3609-3613.	2.4	27

#	Article	IF	CITATIONS
73	Effect of processing on water absorption and softening kinetics in chickpea (Cicer arietinumL) seeds. , 1998, 78, 169.		1
74	Chemical composition of extracted dried olive pomaces containing two and three phases. Food Biotechnology, 1997, 11, 273-291.	0.6	39
75	Obtención y caracterización de aislados proteicos de colza. Grasas Y Aceites, 1997, 48, 282-289.	0.3	14
76	Biogenesis of Off-Odor in Broccoli Storage under Low-Oxygen Atmosphere. Journal of Agricultural and Food Chemistry, 1995, 43, 1310-1313.	2.4	47
77	Bowman-Birk Inhibitors from Legumes: Utilisation in Disease Prevention and Therapy. , 0, , .		9
78	A Protocol for Minimal Single Protein Labeling with CyDye Fluors for Live Cell Internalization Assays. , 0, , .		0