Corneliu-Mircea Davidescu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8341103/publications.pdf

Version: 2024-02-01

41 papers 727 citations

567281 15 h-index 552781 26 g-index

42 all docs 42 docs citations

times ranked

42

783 citing authors

#	Article	IF	Citations
1	Antimicrobial Activity of Cellulose Based Materials. Polymers, 2022, 14, 735.	4.5	16
2	Symmetry between Structure–Antibacterial Effect of Polymers Functionalized with Phosphonium Salts. Symmetry, 2022, 14, 572.	2.2	0
3	New Polymeric Adsorbents Functionalized with Aminobenzoic Groups for the Removal of Residual Antibiotics. Molecules, 2022, 27, 2894.	3.8	3
4	Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. International Journal of Molecular Sciences, 2021, 22, 7449.	4.1	144
5	Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics, 2021, 13, 1639.	4.5	12
6	Eu(III) removal by tetrabutylammonium di-hydrogen phosphate (TBAH2P) functionalized polymers. Arabian Journal of Chemistry, 2020, 13, 3534-3545.	4.9	8
7	Kinetics and Thermodynamics Studies for Cadmium (II) Adsorption onto Functionalized Chitosan with Hexa-Decyl-Trimethyl-Ammonium Chloride. Materials, 2020, 13, 5552.	2.9	O
8	Modified Chitosan for Silver Recoveryâ€"Kinetics, Thermodynamic, and Equilibrium Studies. Materials, 2020, 13, 657.	2.9	11
9	New Generation of Antibacterial Products Based on Colloidal Silver. Materials, 2020, 13, 1578.	2.9	5
10	Synthesis, Characterization and Adsorptive Performances of a Composite Material Based on Carbon and Iron Oxide Particles. International Journal of Molecular Sciences, 2019, 20, 1609.	4.1	6
11	Gold (III) adsorption from dilute waste solutions onto Amberlite XAD7 resin modified with L-glutamic acid. Scientific Reports, 2019, 9, 8757.	3.3	35
12	New polymeric adsorbent materials used for removal of phenolic derivatives from wastewaters. Pure and Applied Chemistry, 2019, 91, 443-458.	1.9	14
13	Amberlite XAD7 resin functionalized with crown ether and Fe(III) used for arsenic removal from water. Pure and Applied Chemistry, 2019, 91, 375-388.	1.9	7
14	Eco-materials for Arsenium and Selenium Removal from Aqueous Solutions. Revista De Chimie (discontinued), 2019, 70, 1586-1591.	0.4	3
15	Rare Earth Elements Removal from Water Using Natural Polymers. Scientific Reports, 2018, 8, 316.	3.3	56
16	ARSENIC ADSORPTION INTO THE FIXED BED COLUMN FROM DRINKING GROUNDWATER. , 2018, , .		2
17	Optimizing the lanthanum adsorption process onto chemically modified biomaterials using factorial and response surface design. Journal of Environmental Management, 2017, 204, 839-844.	7.8	27
18	Sorption properties of Amberlite XAD 7 functionalized with sodium \hat{l}^2 -glycerophosphate. Pure and Applied Chemistry, 2016, 88, 1143-1154.	1.9	2

#	Article	IF	Citations
19	Performance of poly(styrene-co-divinylbenzene) functionalized with different aminophosphonate pendant groups, in the removal of phenolic compounds from aqueous solutions. Pure and Applied Chemistry, 2016, 88, 993-1004.	1.9	6
20	Lanthanum Separation from Aqueous Solutions Using Magnesium Silicate Functionalized with Tetrabutylammonium Dihydrogen Phosphate. Journal of Chemical & Engineering Data, 2016, 61, 535-542.	1.9	24
21	Behaviour of Silica and Florisil as Solid Supports in the Removal Process of As(V) from Aqueous Solutions. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-10.	1.6	9
22	Nanocrystalline ferrites used as adsorbent in the treatment process of waste waters resulted from ink jet cartridges manufacturing. Open Chemistry, $2015, 13, .$	1.9	8
23	Asymmetric calixarene derivatives as potential hosts in chiral recognition processes. Pure and Applied Chemistry, 2015, 87, 415-439.	1.9	10
24	Studies Regarding As(V) Adsorption from Underground Water by Fe-XAD8-DEHPA Impregnated Resin. Equilibrium Sorption and Fixed-Bed Column Tests. Molecules, 2014, 19, 16082-16101.	3.8	22
25	15th International Conference on Polymers and Organic Chemistry (POC-2014). Pure and Applied Chemistry, 2014, 86, 1619-1619.	1.9	O
26	Effect of polymer support functionalization on enzyme immobilization and catalytic activity. Pure and Applied Chemistry, 2014, 86, 1793-1803.	1.9	1
27	Phosphonium grafted styrene–divinylbenzene resins impregnated with iron(III) and crown ethers for arsenic removal. Pure and Applied Chemistry, 2014, 86, 1729-1740.	1.9	24
28	Use of styrene–divinylbenzene grafted with aminoethylaminomethyl groups and various ionic liquids in the removal process of thallium and strontium. Pure and Applied Chemistry, 2014, 86, 1741-1753.	1.9	15
29	Interfacial polycondensation method used in the synthesis of polymers containing phosphorus in the main chain. Pure and Applied Chemistry, 2014, 86, 1675-1683.	1.9	4
30	Synthesis, characterization, and Ni(II) ion sorption properties of poly(styrene-co-divinylbenzene) functionalized with aminophosphonic acid groups. Polymer Bulletin, 2013, 70, 277-291.	3.3	20
31	Synthesis, characterization, and adsorption behavior of aminophosphinic grafted on poly(styreneâ€∢i>Coàêdivinylbenzene) for divalent metal ions in aqueous solutions. Polymer Engineering and Science, 2013, 53, 1117-1124.	3.1	19
32	KINETIC, EQUILIBRIUM AND THERMODYNAMIC STUDIES OF CESIUM REMOVAL FROM AQUEOUS SOLUTIONS USING AMBERJET UP1400 AND AMBERLITE IR120 RESINS. Environmental Engineering and Management Journal, 2013, 12, 991-998.	0.6	7
33	Adsorption studies of Cr(III) ions from aqueous solutions by DEHPA impregnated onto Amberlite XAD7 – Factorial design analysis. Chemical Engineering Research and Design, 2012, 90, 1660-1670.	5. 6	49
34	STATISTISTICAL OPTIMIZATION OF CHROMIUM IONS ADSORPTION ON DEHPA-IMPREGNATED AMBERLITE XAD7. Environmental Engineering and Management Journal, 2012, 11, 525-531.	0.6	4
35	Removal of As ^V by Fe ^{III} -Loaded XAD7 Impregnated Resin Containing Di(2-ethylhexyl) Phosphoric Acid (DEHPA): Equilibrium, Kinetic, and Thermodynamic Modeling Studies. Journal of Chemical & Degraphic Programmer Data, 2011, 56, 3830-3838.	1.9	22
36	Equilibrium and Kinetic Studies of the Adsorption of Cr(III) lons onto Amberlite XAD-8 Impregnated with Di-(2-ethylhexyl) Phosphoric Acid (DEHPA). Adsorption Science and Technology, 2011, 29, 989-1005.	3.2	9

#	Article	IF	CITATIONS
37	Biocatalytic synthesis of new copolymers from 3-hydroxybutyric acid and a carbohydrate lactone. Journal of Molecular Catalysis B: Enzymatic, 2011, 71, 22-28.	1.8	21
38	Sol–gel immobilization of Alcalase from Bacillus licheniformis for application in the synthesis of C-terminal peptide amides. Journal of Molecular Catalysis B: Enzymatic, 2011, 73, 90-97.	1.8	22
39	Synthesis and Characterization of Phosphonate Ester/Phosphonic Acid Grafted Styreneâ^Divinylbenzene Copolymer Microbeads and Their Utility in Adsorption of Divalent Metal Ions in Aqueous Solutions. Industrial & Engineering Chemistry Research, 2008, 47, 2010-2017.	3.7	55
40	Wittig-Horner reactions on styrene-divinylbenzene supports with benzaldehyde side-groups. Polymer Bulletin, 2006, 57, 189-197.	3.3	17
41	Magnesium silicate doped with environmentally friendly extractants used for rare earth elements adsorption., 0, 63, 124-134.		8