Juan Manuel Lopez-Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340836/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospraying as a Technique for the Controlled Synthesis of Biocompatible PLGA@Ag2S and PLGA@Ag2S@SPION Nanocarriers with Drug Release Capability. Pharmaceutics, 2022, 14, 214.	2.0	6
2	Synthesis, solubility and antitumor activity of maslinic acid derivatives. European Journal of Medicinal Chemistry Reports, 2022, 4, 100032.	0.6	2
3	Nanoscale Biocompatible Structures Generated from Fluorinated Tripodal Phenylenes on Gold Nanoprisms. ChemistryOpen, 2022, 11, e202200007.	0.9	1
4	The Development of the Bengamides as New Antibiotics against Drug-Resistant Bacteria. Marine Drugs, 2022, 20, 373.	2.2	10
5	SPION nanoparticles for delivery of dopaminergic isoquinoline and benzazepine derivatives. Bioorganic and Medicinal Chemistry, 2022, 69, 116910.	1.4	2
6	Effect of the cross-linking density on the gold core oxidation in hybrid core@shell Au@pNIPAM and Janus Au@p4VP systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124014.	2.3	2
7	Controlling Size and Morphology in Hybrid Core@Shell and Core@Shell@Satellite Nanostructures for Sensing by Surface-Enhanced Raman Scattering. ACS Applied Nano Materials, 2020, 3, 8247-8256.	2.4	11
8	Magnetically active pNIPAM nanosystems as temperature-sensitive biocompatible structures for controlled drug delivery. Artificial Cells, Nanomedicine and Biotechnology, 2020, 48, 1022-1035.	1.9	23
9	Scaling Laws in the Diffusive Release of Neutral Cargo from Hollow Hydrogel Nanoparticles: Paclitaxel-Loaded Poly(4-vinylpyridine). ACS Nano, 2020, 14, 15227-15240.	7.3	15
10	Bengamide Analogues Show A Potent Antitumor Activity against Colon Cancer Cells: A Preliminary Study. Marine Drugs, 2020, 18, 240.	2.2	5
11	10-Fold Quantum Yield Improvement of Ag ₂ S Nanoparticles by Fine Compositional Tuning. ACS Applied Materials & Interfaces, 2020, 12, 12500-12509.	4.0	25
12	Temperature-Controlled Catalysis by Core–Shell–Satellite AuAg@pNIPAM@Ag Hybrid Microgels: A Highly Efficient Catalytic Thermoresponsive Nanoreactor. ACS Applied Materials & Interfaces, 2019, 11, 29360-29372.	4.0	63
13	Chemical composition of industrially and laboratory processed Cyperus esculentus rhizomes. Food Chemistry, 2019, 297, 124896.	4.2	19
14	Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials, 2019, 9, 638.	1.9	293
15	Exploring the Antiangiogenic Potential of Solomonamide A Bioactive Precursors: In Vitro and in Vivo Evidences of the Inhibitory Activity of Solo F-OH During Angiogenesis. Marine Drugs, 2019, 17, 228.	2.2	9
16	Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials, 2019, 9, 656.	1.9	110
17	Tripod-shaped molecules: Synthesis and immobilization on Au(1 1 1) substrates. Applied Surface Science, 2019, 470, 259-268.	3.1	9
18	Exploring the Ring-Closing Metathesis for the Construction of the Solomonamide Macrocyclic Core: Identification of Bioactive Precursors. Journal of Organic Chemistry, 2018, 83, 5365-5383.	1.7	13

#	Article	IF	CITATIONS
19	Au@p4VP core@shell pH-sensitive nanocomposites suitable for drug entrapment. Journal of Colloid and Interface Science, 2018, 514, 704-714.	5.0	19
20	Tripodal penta(p -phenylene) for the biofunctionalization of alkynyl-modified silicon surfaces. Applied Surface Science, 2018, 445, 175-185.	3.1	3
21	Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis. Applied Surface Science, 2018, 428, 566-578.	3.1	10
22	Study of the self-assembly process of an oligo(ethylene glycol)-thioacetyl substituted theophylline (THEO) on gold substrates. Journal of Electroanalytical Chemistry, 2018, 823, 663-671.	1.9	5
23	Paclitaxel-loaded hollow-poly(4-vinylpyridine) nanoparticles enhance drug chemotherapeutic efficacy in lung and breast cancer cell lines. Nano Research, 2017, 10, 856-875.	5.8	22
24	Preparation, characterization, and protein-resistance of films derived from a series of α-oligo(ethylene) Tj ETQq0	00 _{rg} BT/	Overlock 10
25	Inclusion of silver nanoparticles for improving regenerated cellulose membrane performance and reduction of biofouling. International Journal of Biological Macromolecules, 2017, 103, 758-763.	3.6	25
26	Tripalmitin nanoparticle formulations significantly enhance paclitaxel antitumor activity against breast and lung cancer cells in vitro. Scientific Reports, 2017, 7, 13506.	1.6	31
27	Synthesis and Covalent Grafting of Tripodâ€5haped Oligo(p â€phenylene)s Endâ€Capped with Azide Groups. Asian Journal of Organic Chemistry, 2016, 5, 550-559.	1.3	5
28	DMABI tripod structures with sensing capabilities: synthesis, characterization and fluorescence analysis. New Journal of Chemistry, 2016, 40, 2393-2400.	1.4	2
29	Silicon surface biofunctionalization with dopaminergic tetrahydroisoquinoline derivatives. Applied Surface Science, 2016, 360, 419-428.	3.1	11
30	Characterization and stability of a bioactivated alumina nanomembrane for application in flow devices. Microporous and Mesoporous Materials, 2016, 226, 88-93.	2.2	8
31	Application of a novel gastrointestinal tract simulator system based on a membrane bioreactor (SimuGIT) to study the stomach tolerance and effective delivery enhancement of nanoencapsulated macelignan. Chemical Engineering Science, 2016, 140, 104-113.	1.9	19
32	Hybrid Regenerated Cellulose/Loaded Lipid Nanoparticle Membranes: Preparation and Characterization. , 2016, , 973-974.		0
33	Modification of fluorous substrates with oligo(ethylene glycol) via "click―chemistry for long-term resistance of cell adhesion. Journal of Colloid and Interface Science, 2015, 458, 112-118.	5.0	5
34	Membrane surface functionalization via theophylline derivative coating and streptavidin immobilization. Colloids and Surfaces B: Biointerfaces, 2014, 113, 176-181.	2.5	10
35	Thermochemistry of organic azides revisited. Thermochimica Acta, 2014, 597, 78-84.	1.2	12
36	Hybrid Regenerated Cellulose/Loaded Lipid Nanoparticle Membranes: Preparation and Characterization. , 2014, , 1-2.		0

#	Article	IF	CITATIONS
37	Niclosamide quantification in methyl-î²-cyclodextrin after derivatization to aminoniclosamide. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2012, 72, 89-94.	1.6	8
38	Preparation, Chemical and Electrical Characterizations of Lipid Nanoparticles Loaded with Dihydroxybenzophenone. Medicinal Chemistry, 2012, 8, 541-548.	0.7	4
39	Suzuki–Miyaura monocouplings of p-dibromobiphenyl and substituted p-dibromo(penta-p-phenylenes). Tetrahedron, 2011, 67, 2555-2561.	1.0	25
40	Functionalized Lipid Nanoparticles–Cellophane Hybrid Films for Molecular Delivery: Preparation, Physicochemical Characterization, and Stability. Journal of Pharmaceutical Sciences, 2011, 100, 4815-4822.	1.6	8
41	Effect of lipid nanoparticles inclusion on transport parameters through regenerated cellulose membranes. Journal of Membrane Science, 2011, 370, 70-75.	4.1	8
42	Vapor pressures and enthalpies of vaporization of azides. Journal of Chemical Thermodynamics, 2011, 43, 1652-1659.	1.0	15
43	Physicochemical and transport parameters for a lipid coated regenerated cellulose membrane. Vacuum, 2011, 85, 1067-1070.	1.6	4
44	Synthesis and Structural Analysis of Substituted Tripodâ€ 5 haped Tri―and Tetra(<i>p</i> â€phenylene)s. European Journal of Organic Chemistry, 2010, 2010, 5672-5680.	1.2	7
45	Modification of a regenerated cellulose membrane with lipid nanoparticles and layers. Nanoparticle preparation, morphological and physicochemical characterization of nanoparticles and modified membranes. Journal of Membrane Science, 2010, 355, 45-52.	4.1	22
46	Synthesis of theophylline derivatives and study of their activity as antagonists at adenosine receptors. Bioorganic and Medicinal Chemistry, 2010, 18, 2081-2088.	1.4	11
47	Pd-activated carbon catalysts for hydrogenation and Suzuki reactions. Applied Catalysis A: General, 2009, 368, 113-120.	2.2	44
48	Gold―vs. Platinumâ€Catalyzed Polycyclizations by <i>O</i> â€Acyl Migration. Solventâ€Free Reactions. Advanced Synthesis and Catalysis, 2008, 350, 43-48.	2.1	98
49	Synthesis of new mannosyl, galactosyl and glucosyl theophylline nucleosides with potential activity as antagonists of adenosine receptors. DEMA-induced cyclization of glycosylideneiminouracils. Carbohydrate Research, 2008, 343, 855-864.	1.1	9
50	Raman Study of the Rigidity of Penta- <i>p</i> -phenylene Derivatives Used as Legs in Molecular Tripods. Journal of Physical Chemistry B, 2008, 112, 5363-5367.	1.2	8
51	Synthesis of penta-p-phenylenes with oligo(ethylene glycol) side chains. Tetrahedron Letters, 2007, 48, 6075-6079.	0.7	12
52	Chiral high-performance liquid chromatographic separation and circular dichroism spectra of the enantiomers of cytotoxic aristocularine alkaloids. Journal of Chromatography A, 2006, 1129, 140-144.	1.8	9
53	Synthesis of 3,4-dioxocularine and aristocularine alkaloids in a convergent route from aryloxy-phenyl acetamides involving oxalyl chloride-Lewis acid. Arkivoc, 2005, 2002, 62-72.	0.3	18
54	Phytochemical variations within populations of Platycapnos saxicola Willk Biochemical Systematics and Ecology, 2004, 32, 565-572.	0.6	7

#	Article	lF	CITATIONS
55	The palladium(0) Suzuki cross-coupling reaction as the key step in the synthesis of aporphinoids. Tetrahedron, 2004, 60, 5725-5735.	1.0	19
56	Protein-resistant monolayers prepared by hydrosilylation of α-oligo(ethylene glycol)-ï‰-alkenes on hydrogen-terminated silicon (111) surfaces. Chemical Communications, 2004, , 2510-2511.	2.2	52
57	Alkaloids from Fumaria sepium and Fumaria agraria. Biochemical Systematics and Ecology, 2002, 30, 263-265.	0.6	21
58	Pyrrolizidine alkaloids from three Spanish Senecio species. Biochemical Systematics and Ecology, 2002, 30, 981-984.	0.6	11
59	Synthesis of Homoprotoberberines and 8-Oxoprotoberberines by Sequential Bicyclization of Phenylacetamides. Tetrahedron, 2000, 56, 993-998.	1.0	25
60	Sequential bicyclization of biphenyl acetamides promoted by (COCl)2/SnCl4. Total synthesis of 4,5-dioxoaporphines. Tetrahedron, 1997, 53, 14397-14410.	1.0	10
61	A new approach to the synthesis of 4,5-dioxoaporphine alkaloids from preformed biaryl bond precursors. Tetrahedron, 1996, 52, 11307-11320.	1.0	27
62	A versatile approach to the synthesis of 4,5-dioxoaporphine and 3,4-dioxocularine alkaloids. One-Pot sequential ring formation from arylacetamides. Tetrahedron Letters, 1996, 37, 9357-9360.	0.7	15