Shaohang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340744/publications.pdf Version: 2024-02-01

SHAOHANG W/Ц

#	Article	IF	CITATIONS
1	Overcoming photovoltage deficit <i>via</i> natural amino acid passivation for efficient perovskite solar cells and modules. Journal of Materials Chemistry A, 2021, 9, 5857-5865.	10.3	43
2	Inorganic hole transport layers in inverted perovskite solar cells: A review. Nano Select, 2021, 2, 1081-1116.	3.7	65
3	Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7, .	10.3	165
4	Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 21.9% efficiency. Nano Energy, 2021, 88, 106285.	16.0	66
5	Review on Practical Interface Engineering of Perovskite Solar Cells: From Efficiency to Stability. Solar Rrl, 2020, 4, 1900257.	5.8	119
6	Formamidine-assisted fast crystallization to fabricate formamidinium-based perovskite films for high-efficiency and stable solar cells. Journal of Materials Chemistry C, 2020, 8, 1642-1648.	5.5	20
7	Improved open-circuit voltage and ambient stability of CsPbI2Br perovskite solar cells by incorporating CH3NH3Cl. Rare Metals, 2020, 39, 131-138.	7.1	23
8	Fabrication Strategy for Efficient 2D/3D Perovskite Solar Cells Enabled by Diffusion Passivation and Strain Compensation. Advanced Energy Materials, 2020, 10, 2002004.	19.5	97
9	Interfacial engineering with carbon–graphite–Cu _{l´} Ni _{1â~î´} O for ambient-air stable composite-based hole-conductor-free perovskite solar cells. Nanoscale Advances, 2020, 2, 5883-5889.	4.6	8
10	Rational Interface Design and Morphology Control for Bladeâ€Coating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81%. Advanced Functional Materials, 2020, 30, 2001240.	14.9	77
11	Tailoring C ₆₀ for Efficient Inorganic CsPbI ₂ Br Perovskite Solar Cells and Modules. Advanced Materials, 2020, 32, e1907361.	21.0	88
12	An effective surface modification strategy with high reproducibility for simultaneously improving efficiency and stability of inverted MA-free perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 21476-21487.	10.3	18
13	A general strategy to prepare high-quality inorganic charge-transporting layers for efficient and stable all-layer-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 18603-18611.	10.3	31
14	A Tailored Nickel Oxide Holeâ€Transporting Layer to Improve the Longâ€Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900346.	5.8	30
15	Hybrid Inorganic Electron-Transporting Layer Coupled with a Halogen-Resistant Electrode in CsPbI ₂ Br-Based Perovskite Solar Cells to Achieve Robust Long-Term Stability. ACS Applied Materials & Interfaces, 2019, 11, 43303-43311.	8.0	25
16	Controlling Orientation Diversity of Mixed Ion Perovskites: Reduced Crystal Microstrain and Improved Structural Stability. Journal of Physical Chemistry Letters, 2019, 10, 2898-2903.	4.6	18
17	Efficient Methylamine-Containing Antisolvent Strategy to Fabricate High-Efficiency and Stable FA _{0.85} Cs _{0.15} Pb(Br _{0.15} I _{2.85}) Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 18415-18422.	8.0	30
18	A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nature Communications, 2019, 10, 1161.	12.8	225

Shaohang Wu

#	Article	IF	CITATIONS
19	Adverse oxidation of CsPbl ₂ Br perovskite during the crystallization process in an N ₂ glove-box. Journal of Materials Chemistry C, 2019, 7, 5067-5073.	5.5	14
20	[6,6]-Phenyl-C ₆₁ -Butyric Acid Methyl Ester/Cerium Oxide Bilayer Structure as Efficient and Stable Electron Transport Layer for Inverted Perovskite Solar Cells. ACS Nano, 2018, 12, 2403-2414.	14.6	114
21	Facile surface modification of CH ₃ NH ₃ Pbl ₃ films leading to simultaneously improved efficiency and stability of inverted perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 6255-6264.	10.3	34
22	Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbl2Br light absorber. Materials Today Energy, 2018, 8, 125-133.	4.7	121
23	Cal ₂ : a more effective passivator of perovskite films than Pbl ₂ for high efficiency and long-term stability of perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 7903-7912.	10.3	69
24	Hexagonal-Tiled Indium Tin Oxide Electrodes To Enhance Light Trapping in Perovskite Solar Cells. ACS Applied Nano Materials, 2018, 1, 6159-6167.	5.0	9
25	Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800645.	3.7	43
26	Sea coral-like NiCo ₂ O ₄ @(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catalysis Science and Technology, 2018, 8, 4151-4158.	4.1	16
27	Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Advances, 2017, 7, 35819-35826.	3.6	115
28	Electrical properties of zinc-oxide-based thin-film transistors using strontium-oxide-doped semiconductors. Chinese Physics B, 2015, 24, 108504.	1.4	1
29	Pr and F co-doped SnO_2 transparent conductive films with high work function deposited by ion-assisted electron beam evaporation. Optics Express, 2014, 22, 4731.	3.4	13
30	Spontaneous formation of a large area, aligned, ordered, π-conjugated film with polarized fluorescence and an amplified spontaneous emission based on a liquid crystalline bi-1,3,4-oxadiazole derivative. RSC Advances, 2013, 3, 19104.	3.6	3
31	Two dimensional directed π–π interactions in a linear shaped bi-1,3,4-oxadiazole derivative to achieve organic single crystal with highly polarized fluorescence and amplified spontaneous emissions.	6.7	30