
## Behzad Nematollahi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340740/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Effect of surface moisture on inter-layer strength of 3D printed concrete. Construction and Building<br>Materials, 2018, 172, 468-475.                                                            | 3.2 | 356       |
| 2  | Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Materials & Design, 2014, 57, 667-672.                                  | 5.1 | 299       |
| 3  | Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate. Ceramics International, 2015, 41, 5696-5704.                                              | 2.3 | 284       |
| 4  | Effect of Polypropylene Fibre Addition on Properties of Geopolymers Made by 3D Printing for Digital<br>Construction. Materials, 2018, 11, 2352.                                                   | 1.3 | 171       |
| 5  | Development of 3D-printable ultra-high performance fiber-reinforced concrete for digital construction. Construction and Building Materials, 2020, 257, 119546.                                    | 3.2 | 167       |
| 6  | Development of 3D printable engineered cementitious composites with ultra-high tensile ductility for digital construction. Materials and Design, 2019, 181, 108088.                               | 3.3 | 157       |
| 7  | High ductile behavior of a polyethylene fiber-reinforced one-part geopolymer composite: A<br>micromechanics-based investigation. Archives of Civil and Mechanical Engineering, 2017, 17, 555-563. | 1.9 | 137       |
| 8  | Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Construction and Building Materials, 2017, 131, 552-563.            | 3.2 | 137       |
| 9  | Tensile Strain Hardening Behavior of PVA Fiber-Reinforced Engineered Geopolymer Composite. Journal of Materials in Civil Engineering, 2015, 27, .                                                 | 1.3 | 135       |
| 10 | Comparative deflection hardening behavior of short fiber reinforced geopolymer composites.<br>Construction and Building Materials, 2014, 70, 54-64.                                               | 3.2 | 130       |
| 11 | Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber.<br>Journal of Cleaner Production, 2018, 195, 1069-1080.                                            | 4.6 | 127       |
| 12 | Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Composites Part<br>B: Engineering, 2016, 89, 253-265.                                                         | 5.9 | 125       |
| 13 | Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications. Automation in Construction, 2019, 101, 179-189.                              | 4.8 | 120       |
| 14 | Fiber orientation effects on ultra-high performance concrete formed by 3D printing. Cement and Concrete Research, 2021, 143, 106384.                                                              | 4.6 | 113       |
| 15 | Integrating reinforcement in digital fabrication with concrete: A review and classification framework. Cement and Concrete Composites, 2021, 119, 103964.                                         | 4.6 | 101       |
| 16 | Current Progress of 3D Concrete Printing Technologies. , 2017, , .                                                                                                                                |     | 93        |
| 17 | Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Archives of Civil and Mechanical Engineering, 2017, 17, 55-64.                               | 1.9 | 88        |
| 18 | Method of Optimisation for Ambient Temperature Cured Sustainable Geopolymers for 3D Printing Construction Applications. Materials, 2019, 12, 902.                                                 | 1.3 | 80        |

Behzad Nematollahi

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Type of Fiber on Inter-Layer Bond and Flexural Strengths of Extrusion-Based 3D Printed<br>Geopolymer. Materials Science Forum, 0, 939, 155-162.                                                                | 0.3 | 73        |
| 20 | Ambient temperature cured â€~just-add-water' geopolymer for 3D concrete printing applications. Cement<br>and Concrete Composites, 2021, 121, 104060.                                                                     | 4.6 | 72        |
| 21 | Application of geopolymers for treatment of water contaminated with organic and inorganic pollutants: State-of-the-art review. Journal of Environmental Chemical Engineering, 2021, 9, 105095.                           | 3.3 | 65        |
| 22 | Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Construction and Building Materials, 2019, 215, 1015-1032.                  | 3.2 | 58        |
| 23 | Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceramics International, 2017, 43, 15616-15625.                                                                   | 2.3 | 55        |
| 24 | 3D concrete printing of permanent formwork for concrete column construction. Cement and Concrete Composites, 2021, 121, 104039.                                                                                          | 4.6 | 49        |
| 25 | Micromechanics constitutive modelling and optimization of strain hardening geopolymer composite.<br>Ceramics International, 2017, 43, 5999-6007.                                                                         | 2.3 | 44        |
| 26 | Efficiency of Different Superplasticizers and Retarders on Properties of â€~One-Part' Fly Ash-Slag<br>Blended Geopolymers with Different Activators. Materials, 2019, 12, 3410.                                          | 1.3 | 44        |
| 27 | A roadmap for quality control of hardening and hardened printed concrete. Cement and Concrete<br>Research, 2022, 157, 106800.                                                                                            | 4.6 | 43        |
| 28 | 3D Concrete Printing for Construction Applications. , 2019, , 1-11.                                                                                                                                                      |     | 40        |
| 29 | Digital fabrication of eco-friendly ultra-high performance fiber-reinforced concrete. Cement and Concrete Composites, 2022, 125, 104281.                                                                                 | 4.6 | 34        |
| 30 | Influence of Binder Saturation Level on Compressive Strength and Dimensional Accuracy of<br>Powder-Based 3D Printed Geopolymer. Materials Science Forum, 0, 939, 177-183.                                                | 0.3 | 33        |
| 31 | Interlayer Strength of 3D Printed Concrete. , 2019, , 241-264.                                                                                                                                                           |     | 31        |
| 32 | A comparison of the effects of pozzolanic binders on the hardened-state properties of high-strength<br>cementitious composites reinforced with waste tire fibers. Composites Part B: Engineering, 2019, 162,<br>134-153. | 5.9 | 30        |
| 33 | Properties of Fresh and Hardened Glass Fiber Reinforced Fly Ash Based Geopolymer Concrete. Key<br>Engineering Materials, 0, 594-595, 629-633.                                                                            | 0.4 | 27        |
| 34 | Efficacy of Available Superplasticizers on Geopolymers. Research Journal of Applied Sciences,<br>Engineering and Technology, 2014, 7, 1464-1468.                                                                         | 0.1 | 27        |
| 35 | Properties of one-part geopolymer incorporating wollastonite as partial replacement of geopolymer precursor or sand. Materials Letters, 2020, 263, 127236.                                                               | 1.3 | 25        |
| 36 | Post-processing Methods to Improve Strength of Particle-Bed 3D Printed Geopolymer for Digital<br>Construction Applications. Frontiers in Materials, 2019, 6, .                                                           | 1.2 | 21        |

Behzad Nematollahi

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Fresh and Hardened Properties of 3D Printable Geopolymer Cured in Ambient Temperature. RILEM<br>Bookseries, 2019, , 3-11.                                                                                                                                               | 0.2 | 18        |
| 38 | Properties of additively manufactured geopolymer incorporating mineral wollastonite microfibers.<br>Construction and Building Materials, 2022, 331, 127282.                                                                                                             | 3.2 | 18        |
| 39 | Study of particle packing and paste rheology in alkali activated mixtures to meet the rheology demands of 3D Concrete Printing. Cement and Concrete Composites, 2022, 131, 104581.                                                                                      | 4.6 | 16        |
| 40 | Synthesis of mesoporous magnesium aluminate (MgAl2O4) nanopowder with high surface area with a<br>novel and simple sol–gel method. Journal of Porous Materials, 2015, 22, 481-485.                                                                                      | 1.3 | 15        |
| 41 | Effect of Delay Time on the Mechanical Properties of Extrusion-Based 3D Printed Concrete. , 2017, , .                                                                                                                                                                   |     | 15        |
| 42 | Hardened Properties of 3D Printable â€~One-Part' Geopolymer for Construction Applications. RILEM<br>Bookseries, 2019, , 190-199.                                                                                                                                        | 0.2 | 13        |
| 43 | Compressive Strength and Dimensional Accuracy of Portland Cement Mortar Made Using<br>Powder-Based 3D Printing for Construction Applications. RILEM Bookseries, 2019, , 245-254.                                                                                        | 0.2 | 10        |
| 44 | Properties of Extrusion-Based 3D Printable Geopolymers for Digital Construction Applications. , 2019, , 371-388.                                                                                                                                                        |     | 9         |
| 45 | Properties of 3D-Printable Ductile Fibre-Reinforced Geopolymer Composite for Digital Construction Applications. RILEM Bookseries, 2020, , 363-372.                                                                                                                      | 0.2 | 9         |
| 46 | Structural behavior of precast Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)<br>cantilever retaining walls: Part I — Analysis and design procedures and Environmental Impact<br>Calculations (EIC). KSCE Journal of Civil Engineering, 2014, 18, 1470-1480. | 0.9 | 8         |
| 47 | Structural behavior of precast Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)<br>cantilever retaining walls: Part II — Full scale experimental testing. KSCE Journal of Civil Engineering,<br>2014, 18, 1481-1495.                                           | 0.9 | 8         |
| 48 | Digital Fabrication of â€~Just-Add-Water' Geopolymers: Effects of Curing Condition and Print-Time<br>Interval. RILEM Bookseries, 2020, , 93-102.                                                                                                                        | 0.2 | 6         |
| 49 | Effect of Wollastonite Micro-Fiber Addition on Properties of 3D-Printable †Just-Add-Water'<br>Geopolymers. RILEM Bookseries, 2020, , 23-31.                                                                                                                             | 0.2 | 6         |
| 50 | A review on ultra high performance â€~ductile' concrete (UHPdC) technology. International Journal of<br>Civil and Structural Engineering, 2012, 2, .                                                                                                                    | 0.2 | 6         |
| 51 | Development of Powder-Based 3D Concrete Printing Using Geopolymers. , 2019, , 223-240.                                                                                                                                                                                  |     | 5         |
| 52 | Post-processing Techniques to Enhance Strength of Portland Cement Mortar Digitally Fabricated<br>Using Powder-Based 3D Printing Process. RILEM Bookseries, 2020, , 457-464.                                                                                             | 0.2 | 4         |
| 53 | Sustainability Assessment of Precast Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)<br>Cantilever Retaining Walls. Research Journal of Applied Sciences, Engineering and Technology, 2014, 7,<br>3971-3977.                                                  | 0.1 | 3         |
| 54 | Enhancing Strength of Powder-Based 3D Printed Geopolymers for Digital Construction Applications.<br>RILEM Bookseries, 2020, , 417-425.                                                                                                                                  | 0.2 | 2         |

| #  | Article                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Properties of Powder-Based 3D Printed Geopolymers. , 2019, , 265-280.                                                                       |     | 1         |
| 56 | Shape Accuracy Evaluation of Geopolymer Specimens Made Using Particle-Bed 3D Printing. RILEM Bookseries, 2020, , 1011-1019.                 | 0.2 | 1         |
| 57 | Quantitative Evaluation of Orientation of Steel Fibers in 3D-Printed Ultra-High Performance<br>Concrete. RILEM Bookseries, 2020, , 389-397. | 0.2 | 1         |