
Roger A Sunde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selenoprotein Gene Nomenclature. Journal of Biological Chemistry, 2016, 291, 24036-24040.	1.6	207
2	Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Bioscience Reports, 2009, 29, 329-338.	1.1	165
3	Glutathione peroxidase activity in rat lens and other tissues in relation to dietary selenium intake. Experimental Eye Research, 1974, 18, 563-569.	1.2	162
4	Selenium Regulation of the Selenoprotein and Nonselenoprotein Transcriptomes in Rodents. Advances in Nutrition, 2011, 2, 138-150.	2.9	142
5	Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochemical and Biophysical Research Communications, 1988, 153, 855-861.	1.0	131
6	Transcript Analysis of the Selenoproteome Indicates That Dietary Selenium Requirements of Rats Based on Selenium-Regulated Selenoprotein mRNA Levels Are Uniformly Less Than Those Based on Glutathione Peroxidase Activity. Journal of Nutrition, 2009, 139, 199-206.	1.3	129
7	Effect of Dietary Methionine on Utilization of Tissue Selenium from Dietary Selenomethionine for Glutathione Peroxidase in the Rat. Journal of Nutrition, 1988, 118, 367-374.	1.3	85
8	Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver. Journal of Nutritional Biochemistry, 2001, 12, 693-702.	1.9	84
9	The Selenium Requirement for Glutathione Peroxidase mRNA Level Is Half of the Selenium Requirement for Glutathione Peroxidase Activity in Female Rats. Journal of Nutrition, 1996, 126, 2260-2267.	1.3	82
10	Selenium toxicity but not deficient or super-nutritional selenium status vastly alters the transcriptome in rodents. BMC Genomics, 2011, 12, 26.	1.2	78
11	The biochemistry of selenoproteins. JAOCS, Journal of the American Oil Chemists' Society, 1984, 61, 1891-1900.	0.8	75
12	Effect of dietary methionine on tissue selenium and glutathione peroxidase (EC 1.11.1.9) activity in rats given selenomethionine. British Journal of Nutrition, 1988, 60, 57-68.	1.2	71
13	Dietary selenium regulation of glutathione peroxidase mRNA and other selenium-dependent parameters in male rats. Journal of Nutritional Biochemistry, 1997, 8, 85-91.	1.9	55
14	Dietary Selenium Requirements Based on Glutathione Peroxidase-1 Activity and mRNA Levels and Other Se-Dependent Parameters Are Not Increased by Pregnancy and Lactation in Rats. Journal of Nutrition, 2005, 135, 2144-2150.	1.3	47
15	Phospholipid hydroperoxide glutathione peroxidase (Gpx4) is highly regulated in male turkey poults and can be used to determine dietary selenium requirements. Experimental Biology and Medicine, 2010, 235, 23-31.	1.1	47
16	mRNA transcripts as molecular biomarkers in medicine and nutritionâ~†. Journal of Nutritional Biochemistry, 2010, 21, 665-670.	1.9	46
17	UGA Codon Position Affects the Efficiency of Selenocysteine Incorporation into Glutathione Peroxidase-1. Journal of Biological Chemistry, 1998, 273, 28533-28541.	1.6	42
18	Insights for Setting of Nutrient Requirements, Gleaned by Comparison of Selenium Status Biomarkers in Turkeys and Chickens versus Rats, Mice, and Lambs. Advances in Nutrition, 2016, 7, 1129-1138.	2.9	42

Roger A Sunde

#	Article	IF	CITATIONS
19	Longitudinal selenium status in healthy British adults: assessment using biochemical and molecular biomarkers. British Journal of Nutrition, 2008, 99, S37-S47.	1.2	41
20	Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements of Chickens (Gallus gallus). PLoS ONE, 2016, 11, e0152392.	1.1	38
21	Effect of Selenium Repletion on Glutathione Peroxidase Protein Level in Rat Liver. Journal of Nutrition, 1988, 118, 853-858.	1.3	31
22	Deletion of Thioredoxin Reductase and Effects of Selenite and Selenate Toxicity in Caenorhabditis elegans. PLoS ONE, 2013, 8, e71525.	1.1	29
23	Molecular biomarker panels for assessment of selenium status in rats. Experimental Biology and Medicine, 2010, 235, 1046-1052.	1.1	27
24	Selenoprotein Transcript Level and Enzyme Activity as Biomarkers for Selenium Status and Selenium Requirements in the Turkey (Meleagris gallopavo). PLoS ONE, 2016, 11, e0151665.	1.1	25
25	Selenium regulation of selenoprotein enzyme activity and transcripts in a pilot study with Founder strains from the Collaborative Cross. PLoS ONE, 2018, 13, e0191449.	1.1	25
26	Toxic-Selenium and Low-Selenium Transcriptomes in Caenorhabditis elegans: Toxic Selenium Up-Regulates Oxidoreductase and Down-Regulates Cuticle-Associated Genes. PLoS ONE, 2014, 9, e101408.	1.1	23
27	Cloning, Sequencing, and Expression of Selenoprotein Transcripts in the Turkey (Meleagris) Tj ETQq1 1 0.784314	rgBT /O۱	verlock 10 TF3
28	Liver Selenium and Testis Phospholipid Hydroperoxide Clutathione Peroxidase Are Associated with Growth during Selenium Repletion of Second-Generation Se-Deficient Male Rats. Journal of Nutrition, 1998, 128, 1289-1295.	1.3	19
29	Dietary selenium requirements based on tissue selenium concentration and glutathione peroxidase activities in old female rats. Journal of Trace Elements in Medicine and Biology, 2009, 23, 132-137.	1.5	19
30	Blood Glutathione Peroxidase-1 mRNA Levels Can Be Used as Molecular Biomarkers to Determine Dietary Selenium Requirements in Rats. Experimental Biology and Medicine, 2009, 234, 1271-1279.	1.1	19
31	Selenium requirements based on muscle and kidney selenoprotein enzyme activity and transcript expression in the turkey poult (Meleagris gallopavo). PLoS ONE, 2017, 12, e0189001.	1.1	17
32	Identification and determination of selenocysteine, selenosugar, and other selenometabolites in turkey liver. Metallomics, 2020, 12, 758-766.	1.0	14
33	High dietary inorganic selenium has minimal effects on turkeys and selenium status biomarkers. Poultry Science, 2019, 98, 855-865.	1.5	13
34	Impact of Glutathione Peroxidase-1 (Gpx1) Genotype on Selenoenzyme and Transcript Expression When Repleting Selenium-Deficient Mice. Biological Trace Element Research, 2018, 186, 174-184.	1.9	12
35	Gene Set Enrichment Analysis of Selenium-Deficient and High-Selenium Rat Liver Transcript Expression and Comparison With Turkey Liver Expression. Journal of Nutrition, 2021, 151, 772-784.	1.3	11
36	Incorporation of Selenium into Liver Glutathione Peroxidase in the Se-Adequate and Se-Deficient Rat. Experimental Biology and Medicine, 1980, 165, 291-297.	1.1	10

Roger A Sunde

#	Article	IF	CITATIONS
37	Metabolism of Tracer 75Se Selenium From Inorganic and Organic Selenocompounds Into Selenoproteins in Rats, and the Missing 75Se Metabolites. Frontiers in Nutrition, 2021, 8, 699652.	1.6	10
38	Differential protein expression due to Se deficiency and Se toxicity in rat liver. Journal of Nutritional Biochemistry, 2021, 98, 108831.	1.9	8
39	Minimum Selenium Requirements Increase When Repleting Second-Generation Selenium-Deficient Rats but Are Not Further Altered by Vitamin E Deficiency. Biological Trace Element Research, 2017, 177, 139-147.	1.9	5
40	The hepatic transcriptome of the turkey poult (Meleagris gallopavo) is minimally altered by high inorganic dietary selenium. PLoS ONE, 2020, 15, e0232160.	1.1	4
41	Selenium Regulation of the Selenoprotein and Non-selenoprotein Transcriptomes in a Variety of Species. , 2016, , 175-186.		2
42	Milton L Sunde, PhD: 1921–2015. Journal of Nutrition, 2020, 150, 1997-2000.	1.3	0