Veli-Matti Kähäri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340493/publications.pdf Version: 2024-02-01

<u>ΜΑΤΤΙ ΚΔαΔαι</u>

#	Article	IF	CITATIONS
1	C1r Upregulates Production of Matrix Metalloproteinase-13 and Promotes Invasion of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2022, 142, 1478-1488.e9.	0.3	19
2	Complement Factor D Is a Novel Biomarker and Putative Therapeutic Target in Cutaneous Squamous Cell Carcinoma. Cancers, 2022, 14, 305.	1.7	8
3	Increased incidence of melanoma in children and adolescents in Finland in 1990–2014: nationwide re-evaluation of histopathological characteristics. Annals of Medicine, 2022, 54, 244-252.	1.5	4
4	Identification of metastatic primary cutaneous squamous cell carcinoma utilizing artificial intelligence analysis of whole slide images. Scientific Reports, 2022, 12, .	1.6	11
5	Loss of the laminin subunit alphaâ€3 induces cell invasion and macrophage infiltration in cutaneous squamous cell carcinoma*. British Journal of Dermatology, 2021, 184, 923-934.	1.4	7
6	Matrix metalloproteinases in keratinocyte carcinomas. Experimental Dermatology, 2021, 30, 50-61.	1.4	23
7	The Viability and Growth of HaCaT Cells After Exposure to Bioactive Glass S53P4-Containing Cell Culture Media. Otology and Neurotology, 2021, 42, e559-e567.	0.7	7
8	Discovery of a Novel CIP2A Variant (NOCIVA) with Clinical Relevance in Predicting TKI Resistance in Myeloid Leukemias. Clinical Cancer Research, 2021, 27, 2848-2860.	3.2	11
9	Complement factor I upregulates expression of matrix metalloproteinase $\hat{a}\in 1$ 3 and $\hat{a}\in 2$ and promotes invasion of cutaneous squamous carcinoma cells. Experimental Dermatology, 2021, 30, 1631-1641.	1.4	8
10	The Role of p53 in Progression of Cutaneous Squamous Cell Carcinoma. Cancers, 2021, 13, 4507.	1.7	28
11	Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Molecular Biology Reports, 2021, 48, 1243-1254.	1.0	11
12	Different expression of BRAFV600E, ALK and PD-L1 in melanoma in children and adolescents: a nationwide retrospective study in Finland in 1990–2014. Acta Oncológica, 2021, 60, 165-172.	0.8	3
13	Tumourâ€cellâ€derived complement components C1r and C1s promote growth of cutaneous squamous cell carcinoma. British Journal of Dermatology, 2020, 182, 658-670.	1.4	40
14	H-Ras activation and fibroblast-induced TGF-Î ² signaling promote laminin-332 accumulation and invasion in cutaneous squamous cell carcinoma. Matrix Biology, 2020, 87, 26-47.	1.5	23
15	p53-Regulated Long Noncoding RNA PRECSIT Promotes Progression of Cutaneous Squamous Cell Carcinoma via STAT3 Signaling. American Journal of Pathology, 2020, 190, 503-517.	1.9	33
16	Long non-coding RNAs in cutaneous biologyÂand keratinocyte carcinomas. Cellular and Molecular Life Sciences, 2020, 77, 4601-4614.	2.4	12
17	Risk Factors and Prognosis for Metastatic Cutaneous Squamous Cell Carcinoma: A Cohort Study. Acta Dermato-Venereologica, 2020, 100, adv00266.	0.6	23
18	Complement System in Cutaneous Squamous Cell Carcinoma. International Journal of Molecular Sciences, 2019, 20, 3550.	1.8	26

#	Article	IF	CITATIONS
19	Tumor cell-specific Serpin A1 expression in vulvar squamous cell carcinoma. Archives of Gynecology and Obstetrics, 2019, 299, 1345-1351.	0.8	1
20	Long non-coding RNA PICSAR decreases adhesion and promotes migration of squamous carcinoma cells by downregulating $\hat{I}\pm2\hat{I}^21$ and $\hat{I}\pm5\hat{I}^21$ integrin expression. Biology Open, 2018, 7, .	0.6	31
21	Expression of claudinâ€11 by tumor cells in cutaneous squamous cell carcinoma is dependent on the activity of p38δ. Experimental Dermatology, 2017, 26, 771-777.	1.4	12
22	Complement Component C3 and Complement Factor B Promote Growth of Cutaneous Squamous Cell Carcinoma. American Journal of Pathology, 2017, 187, 1186-1197.	1.9	63
23	Dasatinib promotes apoptosis of cutaneous squamous carcinoma cells by regulating activation of ERK1/2. Experimental Dermatology, 2017, 26, 89-92.	1.4	20
24	Significant Role of Collagen XVII And Integrin β4 in Migration and Invasion of The Less Aggressive Squamous Cell Carcinoma Cells. Scientific Reports, 2017, 7, 45057.	1.6	32
25	European dermatology forum S1â€guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 2: Scleromyxedema, scleredema and nephrogenic systemic fibrosis. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 1581-1594.	1.3	79
26	European Dermatology Forum S1â€guideline on the diagnosis and treatment of sclerosing diseases of the skin, Part 1: localized scleroderma, systemic sclerosis and overlap syndromes. Journal of the European Academy of Dermatology and Venereology, 2017, 31, 1401-1424.	1.3	148
27	Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget, 2017, 8, 45825-45836.	0.8	59
28	Clinical and Pathological Aspects of Melanoma among Children in Finland. Acta Dermato-Venereologica, 2016, 96, 718-720.	0.6	4
29	Collagens XV and XVIII show different expression and localisation in cutaneous squamous cell carcinoma: type XV appears in tumor stroma, while XVIII becomes upregulated in tumor cells and lost from microvessels. Experimental Dermatology, 2016, 25, 348-354.	1.4	30
30	Long Noncoding RNA PICSAR Promotes Growth of Cutaneous Squamous Cell Carcinoma by Regulating ERK1/2 Activity. Journal of Investigative Dermatology, 2016, 136, 1701-1710.	0.3	61
31	MicroRNA-203 Inversely Correlates with Differentiation Grade, Targets c-MYC, and Functions as a Tumor Suppressor in cSCC. Journal of Investigative Dermatology, 2016, 136, 2485-2494.	0.3	39
32	New perspectives on role of tumor microenvironment in progression of cutaneous squamous cell carcinoma. Cell and Tissue Research, 2016, 365, 691-702.	1.5	60
33	Suppression of TGF _β and Angiogenesis by Type VII Collagen in Cutaneous SCC. Journal of the National Cancer Institute, 2016, 108, djv293.	3.0	63
34	Abstract 1098: MiR-203 suppresses cutaneous squamous cell carcinoma growth and targets the myc oncogene. , 2016, , .		1
35	EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2015, 135, 1882-1892.	0.3	48
36	Complement Factor I Promotes Progression of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2015, 135, 579-588.	0.3	68

#	Article	IF	CITATIONS
37	Collagen Turnover in Wound Repair––A Macrophage Connection. Journal of Investigative Dermatology, 2015, 135, 2350-2352.	0.3	26
38	Abstract 3201: Complement component C3 and complement factor B regulate growth of cutaneous squamous cell carcinoma. , 2015, , .		0
39	Complement Factor H: A Biomarker for Progression of Cutaneous Squamous Cell Carcinoma. Journal of Investigative Dermatology, 2014, 134, 498-506.	0.3	73
40	p38δ mitogen-activated protein kinase regulates the expression of tight junction protein ZO-1 in differentiating human epidermal keratinocytes. Archives of Dermatological Research, 2014, 306, 131-141.	1.1	18
41	Matrix metalloproteinases in inflammation. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2571-2580.	1.1	344
42	Inhibition of c-Abl Kinase Activity Renders Cancer Cells Highly Sensitive to Mitoxantrone. PLoS ONE, 2014, 9, e105526.	1.1	10
43	Senescence Sensitivity of Breast Cancer Cells Is Defined by Positive Feedback Loop between CIP2A and E2F1. Cancer Discovery, 2013, 3, 182-197.	7.7	117
44	TGF-β-Elicited Induction of Tissue Inhibitor of Metalloproteinases (TIMP)-3 Expression in Fibroblasts Involves Complex Interplay between Smad3, p38î±, and ERK1/2. PLoS ONE, 2013, 8, e57474.	1.1	55
45	Squamous cell carcinoma of the skin: Emerging need for novel biomarkers. World Journal of Clinical Oncology, 2013, 4, 85.	0.9	37
46	ADAMTS5. American Journal of Pathology, 2012, 181, 743-745.	1.9	8
47	Keratinocyte Growth Factor Induces Gene Expression Signature Associated with Suppression of Malignant Phenotype of Cutaneous Squamous Carcinoma Cells. PLoS ONE, 2012, 7, e33041.	1.1	24
48	MMP-13 Regulates Growth of Wound Granulation Tissue and Modulates Gene Expression Signatures Involved in Inflammation, Proteolysis, and Cell Viability. PLoS ONE, 2012, 7, e42596.	1.1	87
49	Abstract 1074: Keratinocyte growth factor suppresses malignant phenotype of cutaneous squamous carcinoma cells. , 2012, , .		0
50	Matrix Metalloproteinase-13 Promotes Recovery from Experimental Liver Cirrhosis in Rats. Pathobiology, 2011, 78, 239-252.	1.9	54
51	Serpin Peptidase Inhibitor Clade A Member 1 (SerpinA1) Is a Novel Biomarker for Progression of Cutaneous Squamous Cell Carcinoma. American Journal of Pathology, 2011, 179, 1110-1119.	1.9	69
52	TIMPâ€3 promotes apoptosis in nonadherent small cell lung carcinoma cells lacking functional death receptor pathway. International Journal of Cancer, 2011, 128, 991-996.	2.3	31
53	Expression of matrix metalloproteinaseâ€1, â€7, â€9, â€13, Kiâ€67, and HERâ€2 in epithelialâ€myoepithelial sali gland cancer. Head and Neck, 2010, 32, 1019-1027	vary 0.9	20
54	Matrix metalloproteinase-7 activates heparin-binding epidermal growth factor-like growth factor in cutaneous squamous cell carcinoma. British Journal of Dermatology, 2010, 163, 726-735.	1.4	66

#	Article	IF	CITATIONS
55	Forty Years of the European Society for Dermatological Research as European Dermatology Goes from Strength to Strength. Journal of Investigative Dermatology, 2010, 130, 1957-1959.	0.3	ο
56	Expression Profiles and Clinical Correlations of Degradome Components in the Tumor Microenvironment of Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2010, 16, 2022-2035.	3.2	100
57	Hypoxic Conversion of SMAD7 Function from an Inhibitor into a Promoter of Cell Invasion. Cancer Research, 2010, 70, 5984-5993.	0.4	32
58	Hypoxia-activated Smad3-specific Dephosphorylation by PP2A. Journal of Biological Chemistry, 2010, 285, 3740-3749.	1.6	49
59	Requirements for Receptor Engagement during Infection by Adenovirus Complexed with Blood Coagulation Factor X. PLoS Pathogens, 2010, 6, e1001142.	2.1	70
60	Protodynamic Intracellular Acidification by cis-Urocanic Acid Promotes Apoptosis of Melanoma Cells In Vitro and In Vivo. Journal of Investigative Dermatology, 2010, 130, 2431-2439.	0.3	33
61	Ulpu Saarialho-Kere (1960–2009). Journal of Investigative Dermatology, 2010, 130, 640.	0.3	Ο
62	Natural killer cells in wound healing. , 2010, , 519-525.		7
63	Matrix metalloproteinase (MMP)-7 in salivary gland cancer. Acta Oncológica, 2010, 49, 85-90.	0.8	30
64	CCHCR1 Is Up-Regulated in Skin Cancer and Associated with EGFR Expression. PLoS ONE, 2009, 4, e6030.	1.1	33
65	Proteinases in cutaneous wound healing. Cellular and Molecular Life Sciences, 2009, 66, 203-224.	2.4	161
66	Extended release of adenovirus from silica implants in vitro and in vivo. Gene Therapy, 2009, 16, 103-110.	2.3	17
67	Stromal Collagenase in Melanoma: A Vascular Connection. Journal of Investigative Dermatology, 2009, 129, 2545-2547.	0.3	1
68	Transformation-specific matrix metalloproteinases (MMP)-7 and MMP-13 are expressed by tumour cells in epidermolysis bullosa-associated squamous cell carcinomas. British Journal of Dermatology, 2008, 158, 778-785.	1.4	57
69	Diagnostic and prognostic role of matrix metalloproteases in cancer. Expert Opinion on Medical Diagnostics, 2008, 2, 1025-1039.	1.6	3
70	Matrix metalloproteinase (MMP)-1, -9 and -13 as prognostic factors in salivary gland cancer. Acta Oto-Laryngologica, 2008, 128, 482-490.	0.3	33
71	Transforming growth factor-Â-induced alpha-smooth muscle cell actin expression in renal proximal tubular cells is regulated by p38Â mitogen-activated protein kinase, extracellular signal-regulated protein kinase1,2 and the Smad signalling during epithelial-myofibroblast transdifferentiation. Nephrology Dialysis Transplantation, 2008, 23, 1537-1545.	0.4	52
72	Serum VEGF-C is associated with metastatic site in patients with malignant melanoma. Acta Oncológica, 2007, 46, 678-684.	0.8	31

#	Article	IF	CITATIONS
73	CIP2A Inhibits PP2A in Human Malignancies. Cell, 2007, 130, 51-62.	13.5	662
74	Transforming growth factorâ $\in \hat{\mathbf{H}}^2$ signaling in cancer invasion and metastasis. International Journal of Cancer, 2007, 121, 2119-2124.	2.3	179
75	EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways. Journal of Cellular Physiology, 2007, 212, 489-497.	2.0	133
76	p38α and p38δ mitogen-activated protein kinase isoforms regulate invasion and growth of head and neck squamous carcinoma cells. Oncogene, 2007, 26, 5267-5279.	2.6	122
77	Collagenase-3 (MMP-13) Enhances Remodeling of Three-Dimensional Collagen and Promotes Survival of Human Skin Fibroblasts. Journal of Investigative Dermatology, 2007, 127, 49-59.	0.3	51
78	Efficient infection of tumor endothelial cells by a capsid-modified adenovirus. Gene Therapy, 2006, 13, 52-59.	2.3	33
79	Isoform-Specific Regulation of the Actin-Organizing Protein Palladin during TGF-β1-Induced Myofibroblast Differentiation. Journal of Investigative Dermatology, 2006, 126, 2387-2396.	0.3	83
80	Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene, 2006, 25, 2588-2600.	2.6	89
81	Association between high collagenase-3 expression levels and poor prognosis in patients with head and neck cancer. Head and Neck, 2006, 28, 225-234.	0.9	48
82	Oncolytic Capacity of Attenuated Replicative Semliki Forest Virus in Human Melanoma Xenografts in Severe Combined Immunodeficient Mice. Cancer Research, 2006, 66, 7185-7194.	0.4	55
83	Expression of matrix metalloproteinase (MMP)-7 and MMP-13 and loss of MMP-19 and p16 are associated with malignant progression in chronic wounds. British Journal of Dermatology, 2005, 152, 720-726.	1.4	73
84	Smad3 and Extracellular Signal-Regulated Kinase 1/2 Coordinately Mediate Transforming Growth Factor-β-Induced Expression of Connective Tissue Growth Factor in Human Fibroblasts. Journal of Investigative Dermatology, 2005, 124, 1162-1169.	0.3	111
85	Temporospatial expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in mouse antigen-induced arthritis. Histochemistry and Cell Biology, 2005, 124, 535-545.	0.8	12
86	High Serum Levels of Matrix Metalloproteinase-9 and Matrix Metalloproteinase-1 Are Associated with Rapid Progression in Patients with Metastatic Melanoma. Clinical Cancer Research, 2005, 11, 5158-5166.	3.2	161
87	Matrix Metalloproteinases as Therapeutic Targets in Cancer. Current Cancer Drug Targets, 2005, 5, 203-220.	0.8	253
88	Collagenases in cancer. Biochimie, 2005, 87, 273-286.	1.3	277
89	Adenovirus mediated intra-articular expression of collagenase-3 (MMP-13) induces inflammatory arthritis in mice. Annals of the Rheumatic Diseases, 2004, 63, 656-664.	0.5	22
90	Targeted inhibition of human collagenase-3 (MMP-13) expression inhibits squamous cell carcinoma growth in vivo. Oncogene, 2004, 23, 5111-5123.	2.6	70

#	Article	IF	CITATIONS
91	αV integrin promotesin vitro andin vivo survival of cells in metastatic melanoma. International Journal of Cancer, 2004, 112, 61-70.	2.3	47
92	Matrix metalloproteinase-19 is expressed by proliferating epithelium but disappears with neoplastic dedifferentiation. International Journal of Cancer, 2003, 103, 709-716.	2.3	58
93	Endothelial cell–Matrix interactions. Microscopy Research and Technique, 2003, 60, 13-22.	1.2	92
94	Matrix Metalloproteinase-19 Expression in Dermal Wounds and by Fibroblasts in Culture. Journal of Investigative Dermatology, 2003, 121, 997-1004.	0.3	50
95	Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene, 2003, 22, 2121-2134.	2.6	162
96	New prognostic factors and developing therapy of cutaneous melanoma. Annals of Medicine, 2003, 35, 66-78.	1.5	14
97	p38 Mitogen-activated protein kinase pathway suppresses cell survival by inducing dephosphorylation of mitogen-activated protein/extracellular signal-regulated kinase kinase1,2. Cancer Research, 2003, 63, 3473-7.	0.4	73
98	Smad3 Mediates Transforming Growth Factor-β-induced Collagenase-3 (Matrix Metalloproteinase-13) Expression in Human Gingival Fibroblasts. Journal of Biological Chemistry, 2002, 277, 46338-46346.	1.6	93
99	Activation of p38α MAPK Enhances Collagenase-1 (Matrix Metalloproteinase (MMP)-1) and Stromelysin-1 (MMP-3) Expression by mRNA Stabilization. Journal of Biological Chemistry, 2002, 277, 32360-32368.	1.6	195
100	Antitumor Activity and Bystander Effect of Adenovirally Delivered Tissue Inhibitor of Metalloproteinases-3. Molecular Therapy, 2002, 5, 705-715.	3.7	75
101	Potential Applications of Tissue Inhibitor of Metalloproteinase (TIMP) Overexpression For Cancer Gene Therapy. Advances in Experimental Medicine and Biology, 2002, 465, 469-483.	0.8	26
102	Integrin α2β1 Promotes Activation of Protein Phosphatase 2A and Dephosphorylation of Akt and Glycogen Synthase Kinase 3β. Molecular and Cellular Biology, 2002, 22, 1352-1359.	1.1	164
103	High-efficiency gene transfer to primary T lymphocytes by recombinant adenovirus vectors. Journal of Immunological Methods, 2002, 260, 79-89.	0.6	23
104	Matrix metalloproteinases in cancer: Prognostic markers and therapeutic targets. International Journal of Cancer, 2002, 99, 157-166.	2.3	547
105	Expression of collagenase-3 (MMP-13) enhances invasion of human fibrosarcoma HT-1080 cells. International Journal of Cancer, 2002, 97, 283-289.	2.3	44
106	High expression levels of collagenase-1 and stromelysin-1 correlate with shorter disease-free survival in human metastatic melanoma. International Journal of Cancer, 2002, 97, 432-438.	2.3	108
107	Scleroderma-like cutaneous syndromes. Current Rheumatology Reports, 2002, 4, 113-122.	2.1	57
108	Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. Journal of Pathology, 2002, 198, 258-269.	2.1	88

#	Article	IF	CITATIONS
109	Adenoviral delivery of p53 gene suppresses expression of collagenase-3 (MMP-13) in squamous carcinoma cells. Oncogene, 2002, 21, 1187-1195.	2.6	64
110	Accelerated Up-Regulation of L-Sox5, Sox6, and Sox9 by BMP-2 Gene Transfer During Murine Fracture Healing*. Journal of Bone and Mineral Research, 2001, 16, 1837-1845.	3.1	62
111	A metaphyseal defect model of the femur for studies of murine bone healing. Bone, 2001, 28, 423-429.	1.4	84
112	Induction of periosteal callus formation by bone morphogenetic protein-2 employing adenovirus-mediated gene delivery. Matrix Biology, 2001, 20, 123-127.	1.5	25
113	High collagenase-1 expression correlates with a favourable chemoimmunotherapy response in human metastatic melanoma. Melanoma Research, 2001, 11, 157-166.	0.6	24
114	Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human chondrosarcomasNote. Apmis, 2001, 109, 305-315.	0.9	27
115	Expression of human collagenase-3 (MMP-13) by fetal skin fibroblasts is induced by transforming growth factor β via p38 mitogen-activated protein kinase. FASEB Journal, 2001, 15, 1098-1100.	0.2	59
116	MAPK/ERK Overrides the Apoptotic Signaling from Fas, TNF, and TRAIL Receptors. Journal of Biological Chemistry, 2001, 276, 16484-16490.	1.6	287
117	p38 Mitogen-Activated Protein Kinase-Dependent Activation of Protein Phosphatases 1 and 2A Inhibits MEK1 and MEK2 Activity and Collagenase 1 (MMP-1) Gene Expression. Molecular and Cellular Biology, 2001, 21, 2373-2383.	1.1	183
118	Expression of human collagenaseâ€3 (MMPâ€13) by fetal skin fibroblasts is induced by transforming growth factorâ€Î² via p38 mitogenâ€activated protein kinase. FASEB Journal, 2001, 15, 1098-1100.	0.2	6
119	Activation of extracellular signal-regulated protein kinase1,2 results in down-regulation of decorin expression in fibroblasts. Biochemical Journal, 2000, 349, 19.	1.7	13
120	Activation of extracellular signal-regulated protein kinase1,2 results in down-regulation of decorin expression in fibroblasts. Biochemical Journal, 2000, 349, 19-25.	1.7	18
121	Expression of collagenase-3 (matrix metalloproteinase-13) in transitional-cell carcinoma of the urinary bladder. International Journal of Cancer, 2000, 88, 417-423.	2.3	58
122	Expression of Human Macrophage Metalloelastase (MMP-12) by Tumor Cells in Skin Cancer. Journal of Investigative Dermatology, 2000, 114, 1113-1119.	0.3	88
123	Expression and activity of matrix metalloproteinase-2 and -9 in experimental granulation tissueNote. Apmis, 2000, 108, 318-328.	0.9	45
124	Transcriptional targeting of adenoviral gene delivery into migrating wound keratinocytes using FiRE, a growth factor-inducible regulatory element. Gene Therapy, 2000, 7, 1640-1647.	2.3	15
125	Inhibition of collagenase-3 (MMP-13) expression in transformed human keratinocytes by interferon-1 ³ is associated with activation of extracellular signal-regulated kinase-1,2 and STAT1. Oncogene, 2000, 19, 248-257.	2.6	54
126	A Role for Decorin in the Structural Organization of Periodontal Ligament. Laboratory Investigation, 2000, 80, 1869-1880.	1.7	112

#	Article	IF	CITATIONS
127	Introduction: Cell invasion: cooperation between gene families at distinct levels. Cellular and Molecular Life Sciences, 2000, 57, 3-4.	2.4	1
128	Matrix metalloproteinases in tumor invasion. Cellular and Molecular Life Sciences, 2000, 57, 5-15.	2.4	295
129	Activation of Extracellular Signal-regulated Kinase 1/2 Inhibits Type I Collagen Expression by Human Skin Fibroblasts. Journal of Biological Chemistry, 2000, 275, 34634-34639.	1.6	55
130	Expression of extracellular matrix genes: transforming growth factor (TGF)-β1 and ras in tibial fracture healing of lathyritic rats. Bone, 2000, 27, 551-557.	1.4	13
131	Regulation of matrix metalloproteinase expression in tumor invasion. FASEB Journal, 1999, 13, 781-792.	0.2	1,390
132	Integrin α2β1 Mediates Isoform-Specific Activation of p38 and Upregulation of Collagen Gene Transcription by a Mechanism Involving the α2 Cytoplasmic Tail. Journal of Cell Biology, 1999, 147, 401-416.	2.3	206
133	Transforming Growth Factor-β Induces Collagenase-3 Expression by Human Gingival Fibroblasts via p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1999, 274, 37292-37300.	1.6	191
134	Trendsin Molecular Medicine: Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Annals of Medicine, 1999, 31, 34-45.	1.5	390
135	Induction of Collagenase-3 (MMP-13) Expression in Human Skin Fibroblasts by Three-dimensional Collagen Is Mediated by p38 Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1999, 274, 2446-2455.	1.6	248
136	Collagenase-3 (MMP-13) is Expressed by Tumor Cells in Invasive Vulvar Squamous Cell Carcinomas. American Journal of Pathology, 1999, 154, 469-480.	1.9	119
137	Differential Regulation of the AP-1 Family Members by UV Irradiation In Vitro and In Vivo. Cellular Signalling, 1998, 10, 191-195.	1.7	38
138	Activation of Tissue Inhibitor of Metalloproteinases-3 (TIMP-3) mRNA Expression in Scleroderma Skin Fibroblasts. Journal of Investigative Dermatology, 1998, 110, 416-421.	0.3	62
139	Collagenase-1, stromelysin-1 and 92 kDa gelatinase are associated with tumor necrosis factor-α induced morphological change of human endothelial cells in Vitro. Matrix Biology, 1998, 17, 293-304.	1.5	32
140	Enhancement of fibroblast collagenase-1 (MMP-1) gene expression by tumor promoter okadaic acid is mediated by stress-activated protein kinases jun N-terminal kinase and p38. Matrix Biology, 1998, 17, 547-557.	1.5	78
141	Transcription of α2 Integrin Gene in Osteosarcoma Cells Is Enhanced by Tumor Promoters. Experimental Cell Research, 1998, 243, 1-10.	1.2	20
142	Human TIMP-3 Is Expressed During Fetal Development, Hair Growth Cycle, and Cancer Progression. Journal of Histochemistry and Cytochemistry, 1998, 46, 437-447.	1.3	48
143	Enhancement of Fibroblast Collagenase (Matrix Metalloproteinase-1)Gene Expression by Ceramide Is Mediated by Extracellular Signal-regulated and Stress-activated Protein Kinase Pathways. Journal of Biological Chemistry, 1998, 273, 5137-5145.	1.6	184
144	Expression of Collagenase-3 (MMP-13) by Tumor Cells in Squamous Cell Carcinomas of the Head and Neck. Advances in Experimental Medicine and Biology, 1998, 451, 63-68.	0.8	8

#	Article	IF	CITATIONS
145	High Level Expression of Tissue Inhibitors of Metalloproteinases-1,-2 and -3 in Melanoma Cells Achieved by Adenovirus Mediated Gene Transfer. Advances in Experimental Medicine and Biology, 1998, 451, 69-72.	0.8	9
146	Matrix metalloproteinases in skin. Experimental Dermatology, 1997, 6, 199-213.	1.4	516
147	Distinct Populations of Stromal Cells Express Collagenase-3 (MMP-13) and Collagenase-1 (MMP-1) in Chronic Ulcers but Not in Normally Healing Wounds. Journal of Investigative Dermatology, 1997, 109, 96-101.	0.3	233
148	Human Collagenase-3 Is Expressed in Malignant Squamous Epithelium of the Skin. Journal of Investigative Dermatology, 1997, 109, 225-231.	0.3	150
149	Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene, 1997, 14, 2651-2660.	2.6	136
150	Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. , 1997, 208, 387-397.		262
151	Regulation of Membrane-Type Matrix Metalloproteinase-1 Expression by Growth Factors and Phorbol 12-Myristate 13-Acetate. FEBS Journal, 1996, 239, 239-247.	0.2	167
152	Human Granulation-tissue Fibroblasts Show Enhanced Proteoglycan Gene Expression and Altered Response to TGF-β1. Journal of Dental Research, 1996, 75, 1767-1778.	2.5	53
153	The protein phosphatase inhibitor okadaic acid suppresses type I collagen gene expression in cultured fibroblasts at the transcriptional level. Biochemical Journal, 1995, 308, 995-999.	1.7	5
154	TNF-R55-Specific Form of Human Tumor Necrosis Factor-α Induces Collagenase Gene Expression By Human Skin Fibroblasts. Journal of Investigative Dermatology, 1995, 105, 197-202.	0.3	23
155	Differential Regulation of Decorin and Biglycan Gene Expression by Dexamethasone and Retinoic Acid in Cultured Human Skin Fibroblasts. Journal of Investigative Dermatology, 1995, 104, 503-508.	0.3	43
156	Integrin α2β1 Is a Positive Regulator of Collagenase (MMP-1) and Collagen α1(I) Gene Expression. Journal of Biological Chemistry, 1995, 270, 13548-13552.	1.6	263
157	Suppression of Elastin Gene Expression in Dermal Fibroblasts by Protein Phosphatase Inhibitor Okadaic Acid. Biochemical and Biophysical Research Communications, 1995, 209, 175-181.	1.0	4
158	Cyclosporin A Enhances Cytokine and Phorbol Ester-Induced Fibroblast Collagenase Expression. Journal of Investigative Dermatology, 1994, 102, 938-944.	0.3	23
159	Dexamethasone Suppresses Elastin Gene Expression in Human Skin Fibroblasts in Culture. Biochemical and Biophysical Research Communications, 1994, 201, 1189-1196.	1.0	24
160	Activation of Dermal Connective Tissue in Scleroderma. Annals of Medicine, 1993, 25, 511-518.	1.5	54
161	Leukoregulin, A T-cell derived cytokine, upregulates stromelysin-1 gene expression in human dermal fibroblasts: Evidence for the role of AP-1 in transcriptional activiation. Journal of Cellular Biochemistry, 1992, 50, 53-61.	1.2	16
162	Regulation of Elastin Gene Expression. Annals of the New York Academy of Sciences, 1991, 624, 116-136.	1.8	42

#	Article	IF	CITATIONS
163	Molecular biology and pathology of human elastin. Biochemical Society Transactions, 1991, 19, 824-829.	1.6	40
164	Comparative Effects of Interleukin-1 and Tumor Necrosis Factor-α on Collagen Production and Corresponding Procollagen mRNA Levels in Human Dermal Fibroblasts. Journal of Investigative Dermatology, 1991, 96, 243-249.	0.3	104
165	Human Nidogen Gene: Structural and Functional Characterization of the 5'-Flanking Region. Journal of Investigative Dermatology, 1991, 97, 281-285.	0.3	14
166	Evaluation of Transforming Growth Factor β and Type I Procollagen Gene Expression in Fibrotic Skin Disease by In Situ Hybridization. Journal of Investigative Dermatology, 1990, 94, 365-371.	0.3	146
167	Regulation of Elastin Gene Expression: Evidence for Functional Promoter Activity in the 5′-Flanking Region of the Human Gene. Journal of Investigative Dermatology, 1990, 94, 191-196.	0.3	42
168	Eosinophilic fasciitis. Increased collagen production and type I procollagen messenger RNA levels in fibroblasts cultured from involved skin. Archives of Dermatology, 1990, 126, 613-617.	1.7	17
169	Tumor necrosis factor-alpha and interferon-gamma suppress the activation of human type I collagen gene expression by transforming growth factor-beta 1. Evidence for two distinct mechanisms of inhibition at the transcriptional and posttranscriptional levels Journal of Clinical Investigation, 1990. 86. 1489-1495.	3.9	170
170	Characterization of One Phenotype of Human Periodontal Granulation-tissue Fibroblasts. Journal of Dental Research, 1989, 68, 20-25.	2.5	39
171	Collagen in the Extracellular Matrix of Cultured Scleroderma Skin Fibroblasts: Changes Related to Ascorbic Acid-Treatment. Matrix Biology, 1989, 9, 34-39.	1.8	7
172	Epidermal growth factor (EGF) prevents methylprednisolone-induced inhibition of wound healing. Journal of Surgical Research, 1989, 47, 354-359.	0.8	28
173	Identification of Fibroblasts Responsible for Increased Collagen Production in Localized Scleroderma by In Situ Hybridization. Journal of Investigative Dermatology, 1988, 90, 664-670.	0.3	164
174	Gene expression of fibroblast matrix proteins is altered by indomethacin. FEBS Letters, 1988, 231, 125-129.	1.3	17
175	Flow Cytometry of Fibroblasts Cultured from Skin of Patients with Localized Scleroderma. Dermatology, 1988, 177, 348-353.	0.9	1
176	Interferon-α and interferon-γ reduce excessive collagen synthesis and procollagen mRNA levels of scleroderma fibroblasts in culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 968, 45-50.	1.9	64
177	Human recombinant interleukin-1 regulates cellular mRNA levels of dermatan sulphate proteoglycan core protein. Biochemical Journal, 1988, 252, 309-312.	1.7	45
178	Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. Biochemical Journal, 1987, 247, 385-388.	1.7	87
179	Interleukin-1 increases collagen production and mRNA levels in cultured skin fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 929, 142-147.	1.9	119
180	Elevated proî±2(I) collagen mRNA levels in cultured scleroderma fibroblasts result from an increased transcription rate of the corresponding gene. FEBS Letters, 1987, 215, 331-334.	1.3	56

#	Article	IF	CITATIONS
181	Collagen synthesis in the vaginal connective tissue of patients with and without uterine prolapse. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1987, 24, 319-325.	0.5	33
182	Coordinated regulation of type I and type III collagen production and mRNA levels of pro ?1(I) and pro ?2(I) collagen in cultured morphea fibroblasts. Archives of Dermatological Research, 1987, 279, 154-160.	1.1	73
183	Fibroblast Activation in Scleroderma. Scandinavian Journal of Rheumatology, 1984, 13, 229-237.	0.6	27
184	Increased type I collagen mRNA levels in cultured scleroderma fibroblasts. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 781, 183-186.	2.4	66
185	Targeting Degradome Genes via Engineered Viral Vectors. , 0, , 877-894.		0