
Tao Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probabilistic electric load forecasting: A tutorial review. International Journal of Forecasting, 2016, 32, 914-938.	6.5	795
2	Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges. IEEE Transactions on Smart Grid, 2019, 10, 3125-3148.	9.0	746
3	Energy Forecasting: A Review and Outlook. IEEE Open Access Journal of Power and Energy, 2020, 7, 376-388.	3.4	268
4	Long Term Probabilistic Load Forecasting and Normalization With Hourly Information. IEEE Transactions on Smart Grid, 2014, 5, 456-462.	9.0	253
5	Electric load forecasting with recency effect: A big data approach. International Journal of Forecasting, 2016, 32, 585-597.	6.5	144
6	Verification of deterministic solar forecasts. Solar Energy, 2020, 210, 20-37.	6.1	142
7	Combining Probabilistic Load Forecasts. IEEE Transactions on Smart Grid, 2019, 10, 3664-3674.	9.0	139
8	Probabilistic Load Forecasting via Quantile Regression Averaging on Sister Forecasts. IEEE Transactions on Smart Grid, 2015, , 1-1.	9.0	127
9	Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting. International Journal of Forecasting, 2019, 35, 1389-1399.	6.5	114
10	Improving short term load forecast accuracy via combining sister forecasts. Energy, 2016, 98, 40-49.	8.8	100
11	Benchmarking robustness of load forecasting models under data integrity attacks. International Journal of Forecasting, 2018, 34, 89-104.	6.5	97
12	Weather station selection for electric load forecasting. International Journal of Forecasting, 2015, 31, 286-295.	6.5	95
13	From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China. Energy Policy, 2018, 121, 300-313.	8.8	94
14	A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable and Sustainable Energy Reviews, 2022, 161, 112348.	16.4	80
15	Fuzzy interaction regression for short term load forecasting. Fuzzy Optimization and Decision Making, 2014, 13, 91-103.	5.5	78
16	A Na $ ilde{A}$ `ve multiple linear regression benchmark for short term load forecasting. , 2011, , .		74
17	Relative Humidity for Load Forecasting Models. IEEE Transactions on Smart Grid, 2018, 9, 191-198.	9.0	71
18	On Normality Assumption in Residual Simulation for Probabilistic Load Forecasting. IEEE Transactions on Smart Grid, 2017, 8, 1046-1053.	9.0	70

ΤΑΟ ΗΟΝG

#	Article	IF	CITATIONS
19	GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation. International Journal of Forecasting, 2016, 32, 1012-1016.	6.5	67
20	Real-time anomaly detection for very short-term load forecasting. Journal of Modern Power Systems and Clean Energy, 2018, 6, 235-243.	5.4	64
21	Temperature Scenario Generation for Probabilistic Load Forecasting. IEEE Transactions on Smart Grid, 2016, , 1-1.	9.0	60
22	Modeling and forecasting hourly electric load by multiple linear regression with interactions. , 2010, , .		55
23	Big data analytics for future electricity grids. Electric Power Systems Research, 2020, 189, 106788.	3.6	54
24	Long-Term Retail Energy Forecasting With Consideration of Residential Customer Attrition. IEEE Transactions on Smart Grid, 2015, 6, 2245-2252.	9.0	53
25	A semi-heterogeneous approach to combining crude oil price forecasts. Information Sciences, 2018, 460-461, 279-292.	6.9	52
26	A copula-based Bayesian method for probabilistic solar power forecasting. Solar Energy, 2020, 196, 336-345.	6.1	52
27	Multivariate Quantile Regression for Short-Term Probabilistic Load Forecasting. IEEE Transactions on Power Systems, 2020, 35, 628-638.	6.5	43
28	Variable Selection Methods for Probabilistic Load Forecasting: Empirical Evidence from Seven States of the United States. IEEE Transactions on Smart Grid, 2018, 9, 6039-6046.	9.0	39
29	A historical weather forecast dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) for energy forecasting. Solar Energy, 2022, 232, 263-274.	6.1	39
30	Robust Regression Models for Load Forecasting. IEEE Transactions on Smart Grid, 2019, 10, 5397-5404.	9.0	38
31	Guest Editorial Big Data Analytics for Grid Modernization. IEEE Transactions on Smart Grid, 2016, 7, 2395-2396.	9.0	31
32	Combining Weather Stations for Electric Load Forecasting. Energies, 2019, 12, 1510.	3.1	30
33	Short-term industrial reactive power forecasting. International Journal of Electrical Power and Energy Systems, 2019, 107, 177-185.	5.5	28
34	Descriptive Analytics-Based Anomaly Detection for Cybersecure Load Forecasting. IEEE Transactions on Smart Grid, 2019, 10, 5964-5974.	9.0	23
35	Wind Speed for Load Forecasting Models. Sustainability, 2017, 9, 795.	3.2	22
36	Temperature anomaly detection for electric load forecasting. International Journal of Forecasting, 2020, 36, 324-333.	6.5	22

Tao Hong

#	Article	IF	CITATIONS
37	Short-term industrial load forecasting: A case study in an Italian factory. , 2017, , .		21
38	Load forecasting using 24 solar terms. Journal of Modern Power Systems and Clean Energy, 2018, 6, 208-214.	5.4	18
39	Weather Data for Energy Analytics: From Modeling Outages and Reliability Indices to Simulating Distributed Photovoltaic Fleets. IEEE Power and Energy Magazine, 2018, 16, 43-53.	1.6	17
40	A Multivariate Approach to Probabilistic Industrial Load Forecasting. Electric Power Systems Research, 2020, 187, 106430.	3.6	17
41	Calculating line losses in smart grid: A new rule of thumb. , 2010, , .		16
42	Training Energy Data Scientists : Universities and Industry Need to Work Together to Bridge the Talent Gap. IEEE Power and Energy Magazine, 2018, 16, 66-73.	1.6	16
43	A robust support vector regression model for electric load forecasting. International Journal of Forecasting, 2023, 39, 1005-1020.	6.5	16
44	Artificial Intelligence for Load Forecasting: History, Illusions, and Opportunities. IEEE Power and Energy Magazine, 2022, 20, 14-23.	1.6	12
45	Combining load forecasts from independent experts. , 2015, , .		11
46	Human-machine co-construct intelligence on horizon year load in long term spatial load forecasting. , 2009, , .		8
47	On the impact of demand response: Load shedding, energy conservation, and further implications to load forecasting. , 2012, , .		8
48	Guest Editorial: Special Section on Analytics for Energy Forecasting with Applications to Smart Grid. IEEE Transactions on Smart Grid, 2014, 5, 399-401.	9.0	6
49	Data Integrity Attacks Against Outage Management Systems. IEEE Transactions on Engineering Management, 2022, 69, 765-772.	3.5	5
50	Cost of temperature history data uncertainties in short term electric load forecasting. , 2010, , .		3
51	Four best practices of load forecasting for electric cooperatives. , 2014, , .		3
52	From high-resolution data to high-resolution probabilistic load forecasts. , 2016, , .		3
53	Comparing two model selection frameworks for probabilistic load forecasting. , 2016, , .		3
54	Forecasting with high frequency data: M4 competition and beyond. International Journal of Forecasting, 2020, 36, 191-194.	6.5	3

Tao Hong

#	Article	IF	CITATIONS
55	Forecasting for social good. International Journal of Forecasting, 2021, , .	6.5	3
56	Timed Petri Nets Modelling of High-Throughput Screening Process for Fault Study. Industrial Electronics Society (IECON), Annual Conference of IEEE, 2006, , .	0.0	2
57	Scheduling a Life Science High-Throughput Platform under Starvation Constraints Using Timed Transition Petri Nets and Heuristic Search. , 2007, , .		2
58	Improving Gas Load Forecasts With Big Data. Natural Gas & Electricity, 2016, 32, 25-30.	0.2	1
59	Resource Allocation for a Life Science Automation Line: a Petri nets Approach. , 2007, , .		0
60	Guest Editorial: Special Section on Data Analytics for Energy, Water, and Environment. IEEE Transactions on Engineering Management, 2022, 69, 587-588.	3.5	0