
Christophe Dubois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophils, Cancer and Thrombosis: The New Bermuda Triangle in Cancer Research. International Journal of Molecular Sciences, 2022, 23, 1257.	4.1	14
2	Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk in Different Cancer Types. Cancers, 2022, 14, 730.	3.7	11
3	Role of Neutrophils and NETs in Animal Models of Thrombosis. International Journal of Molecular Sciences, 2022, 23, 1411.	4.1	17
4	Oral Squamous Cell Carcinoma Is Associated with a Low Thrombosis Risk Due to Storage Pool Deficiency in Platelets. Biomedicines, 2021, 9, 228.	3.2	2
5	Selatogrel, a reversible P2Y12 receptor antagonist, has reduced off-target interference with haemostatic factors in a mouse thrombosis model. Thrombosis Research, 2021, 200, 133-140.	1.7	14
6	PO-104 Microparticles signature in pancreatic cancer: the BACAP project. Thrombosis Research, 2021, 200, S76.	1.7	0
7	DNAse-dependent, NET-independent pathway of thrombus formation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	34
8	Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. International Journal of Molecular Sciences, 2021, 22, 9317.	4.1	35
9	P2RY12-Inhibitors Reduce Cancer-Associated Thrombosis and Tumor Growth in Pancreatic Cancers. Frontiers in Oncology, 2021, 11, 704945.	2.8	17
10	The P2Y12 Receptor Antagonist Selatogrel Dissolves Preformed Platelet Thrombi In Vivo. Journal of Clinical Medicine, 2021, 10, 5349.	2.4	5
11	Cancer animal models in thrombosis research. Thrombosis Research, 2020, 191, S112-S116.	1.7	2
12	The Interaction of Platelets with Colorectal Cancer Cells Inhibits Tumor Growth but Promotes Metastasis. Cancer Research, 2020, 80, 291-303.	0.9	86
13	Assessment of Thrombotic and Bleeding Tendency in Two Mouse Models of Chronic Kidney Disease: Adenine-Diet and 5/6th Nephrectomy. TH Open, 2020, 04, e66-e76.	1.4	11
14	Platelets, Thrombo-Inflammation, and Cancer: Collaborating With the Enemy. Frontiers in Immunology, 2019, 10, 1805.	4.8	155
15	Involvement of Platelets in Cancers. Seminars in Thrombosis and Hemostasis, 2019, 45, 569-575.	2.7	28
16	Increased levels of the megakaryocyte and platelet expressed cysteine proteases stefin A and cystatin A prevent thrombosis. Scientific Reports, 2019, 9, 9631.	3.3	11
17	A Thrombin-Activatable Factor X Variant Corrects Hemostasis in a Mouse Model for Hemophilia A. Thrombosis and Haemostasis, 2019, 119, 1981-1993.	3.4	5
18	Microvesicles and Cancer Associated Thrombosis. Seminars in Thrombosis and Hemostasis, 2019, 45, 593-603.	2.7	25

CHRISTOPHE DUBOIS

#	Article	IF	CITATIONS
19	Thrombosis Risk Associated with Head and Neck Cancer: A Review. International Journal of Molecular Sciences, 2019, 20, 2838.	4.1	29
20	Neutrophil extracellular traps are associated with the pathogenesis of diffuse alveolar hemorrhage in murine lupus. Journal of Autoimmunity, 2019, 100, 120-130.	6.5	39
21	Mechanisms of cancerâ€associated thrombosis. HemaSphere, 2019, 3, 19-21.	2.7	2
22	Effects of platelets on cancer progression. Thrombosis Research, 2018, 164, S40-S47.	1.7	57
23	Tumor-Derived Microparticles to Monitor Colorectal Cancer Evolution. Methods in Molecular Biology, 2018, 1765, 271-277.	0.9	5
24	Impacts of Cancer on Platelet Production, Activation and Education and Mechanisms of Cancer-Associated Thrombosis. Cancers, 2018, 10, 441.	3.7	76
25	Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. Journal of Thrombosis and Haemostasis, 2018, 16, 2322-2335.	3.8	29
26	Effectiveness of in-hospital geriatric co-management: a systematic review and meta-analysis. Age and Ageing, 2017, 46, 903-910.	1.6	68
27	Fibrin-bearing microparticles: marker of thrombo-embolic events in pancreatic and colorectal cancers. Oncotarget, 2017, 8, 97394-97406.	1.8	12
28	Soluble Siglec-5 associates to PSGL-1 and displays anti-inflammatory activity. Scientific Reports, 2016, 6, 37953.	3.3	26
29	PO-34 - Optimal doses of tinzaparin to reduce both cancer-associated thrombosis and tumor growth in a mouse model of ectopic pancreatic syngeneic tumor. Thrombosis Research, 2016, 140, S189.	1.7	2
30	In-store marketing of inexpensive foods with good nutritional quality in disadvantaged neighborhoods: increased awareness, understanding, and purchasing. International Journal of Behavioral Nutrition and Physical Activity, 2016, 13, 104.	4.6	35
31	The origin and concentration of circulating microparticles differ according to cancer type and evolution: A prospective singleâ€center study. International Journal of Cancer, 2016, 138, 939-948.	5.1	52
32	Circulating microparticles bearing Fibrin associated with whole-body 18FDG-PET: diagnostic tools to detect paraneoplastic polymyalgia rheumatica. Rheumatology International, 2016, 36, 1099-1103.	3.0	3
33	Microparticles and cancer thrombosis in animal models. Thrombosis Research, 2016, 140, S21-S26.	1.7	21
34	Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thrombosis Research, 2016, 139, 65-76.	1.7	162
35	Tissue factor expressed by circulating cancer cellâ€derived microparticles drastically increases the incidence of deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis, 2015, 13, 1310-1319.	3.8	121
36	Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity. Thrombosis and Haemostasis, 2015, 114, 1175-1188.	3.4	34

CHRISTOPHE DUBOIS

#	Article	IF	CITATIONS
37	Impact of venous thromboembolism on the natural history of pancreatic adenocarcinoma. Hepatobiliary and Pancreatic Diseases International, 2015, 14, 436-442.	1.3	24
38	Higher nutritional quality at no additional cost among low-income households: insights from food purchases of "positive deviants― American Journal of Clinical Nutrition, 2015, 102, 190-198.	4.7	42
39	Inhibition of platelet activation prevents the Pâ€selectin and integrinâ€dependent accumulation of cancer cell microparticles and reduces tumor growth and metastasis <i>in vivo</i> . International Journal of Cancer, 2015, 136, 462-475.	5.1	128
40	Neutrophils recruit and activate human endothelial colonyâ€forming cells at the site of vessel injury via Pâ€selectin glycoprotein ligandâ€1 and Lâ€selectin. Journal of Thrombosis and Haemostasis, 2014, 12, 1170-1181.	3.8	22
41	Involvement of Platelet-Derived Microparticles in Tumor Progression and Thrombosis. Seminars in Oncology, 2014, 41, 346-358.	2.2	96
42	Involvement of neutrophils in thrombus formation in living mice. Pathologie Et Biologie, 2014, 62, 1-9.	2.2	12
43	Therapy for Cancer-Related Thromboembolism. Seminars in Oncology, 2014, 41, 319-338.	2.2	26
44	P2X1 expressed on polymorphonuclear neutrophils and platelets is required for thrombosis in mice. Blood, 2014, 124, 2575-2585.	1.4	58
45	Erratum to "Therapy for Cancer-Related Thromboembolism―[Seminars in Oncology, Vol 41, No 3, June 2014, pp 319-338]. Seminars in Oncology, 2014, 41, e47.	2.2	0
46	Real Time In Vivo Imaging of Platelets During Thrombus Formation. , 2013, , 635-649.		4
47	Formulation and Storage of Platelet-Rich Plasma Homemade Product. BioResearch Open Access, 2012, 1, 115-123.	2.6	94
48	Tissue factor–positive neutrophils bind to injured endothelial wall and initiate thrombus formation. Blood, 2012, 120, 2133-2143.	1.4	254
49	On the use of anti-platelet drugs to diminish both tumor growth and thrombosis. Thrombosis Research, 2012, 129, S160-S161.	1.7	0
50	Involvement of tissue factor expressed by cancer cells on tumor growth and thrombosis associated with cancer. Thrombosis Research, 2012, 129, S169-S170.	1.7	0
51	OC-10 Involvement of cancer cell-derived microparticles on thrombus formation in vivo. Thrombosis Research, 2010, 125, S163.	1.7	1
52	Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. Journal of Experimental Medicine, 2009, 206, 1913-1927.	8.5	245
53	Cancer cell–derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. Journal of Cell Biology, 2009, 186, i6-i6.	5.2	0

Real-Time In Vivo Imaging of Platelets During Thrombus Formation. , 2007, , 611-626.

6

CHRISTOPHE DUBOIS

#	Article	IF	CITATIONS
55	Thrombin-initiated platelet activation in vivo is vWF independent during thrombus formation in a laser injury model. Journal of Clinical Investigation, 2007, 117, 953-960.	8.2	148
56	Bile salt–dependent lipase interacts with platelet CXCR4 and modulates thrombus formation in mice and humans. Journal of Clinical Investigation, 2007, 117, 3708-3719.	8.2	40
57	Glycoprotein Vl–dependent and –independent pathways of thrombus formation in vivo. Blood, 2006, 107, 3902-3906.	1.4	202
58	Thrombin-Dependent Platelet Activation Is VWF-Independent during Thrombus Formation In Vivo Blood, 2006, 108, 1510-1510.	1.4	0
59	Dynamics of Calcium Mobilization in Platelets during Thrombus Formation in a Living Mouse Blood, 2005, 106, 649-649.	1.4	1
60	Contribution of PAR-1, PAR-4 and GPIbα in intracellular signaling leading to the cleavage of the β3 cytoplasmic domain during thrombin-induced platelet aggregation. Thrombosis and Haemostasis, 2004, 91, 733-742.	3.4	15
61	Thrombin binding to GPIbα induces integrin αIIbβ3 dependent platelet adhesion to fibrin in ex vivo flowing whole blood. Thrombosis and Haemostasis, 2004, 91, 233-237.	3.4	5
62	Direct Real Time Visualization of Platelet Calclium Signaling In Vivo: Role of Platelet Activation and Thrombus Formation in a Living Mouse Blood, 2004, 104, 325-325.	1.4	2
63	A Role for Bile Salt-Dependent Lipase in Platelet Activation and in Thrombus Formation in Vivo Blood, 2004, 104, 3526-3526.	1.4	1
64	Importance of GPVI in Platelet Activation and Thrombus Formation In Vivo Blood, 2004, 104, 842-842.	1.4	3
65	Recognition of cell surface acceptors by two human α-2,6-sialyltransferases produced in CHO cells. Biochimie, 2003, 85, 311-321.	2.6	12
66	Thrombin binding to GPIbα induces platelet aggregation and fibrin clot retraction supported by resting αIIbβ3 interaction with polymerized fibrin. Thrombosis and Haemostasis, 2003, 89, 853-865.	3.4	33