Matteo Meneghini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8340271/publications.pdf

Version: 2024-02-01

485 papers 11,552 citations

50 h-index 53065 89 g-index

489 all docs 489 docs citations

489 times ranked 6038 citing authors

#	Article	IF	CITATIONS
1	Cumulative Hot-Electron Trapping in GaN-Based Power HEMTs Observed by an Ultrafast (10 V/Ns) On-Wafer Methodology. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 5019-5026.	3.7	15
2	Origin of the Diffusion-Related Optical Degradation of 1.3 \hat{l} /4m Inas QD-LDs Epitaxially Grown on Silicon Substrate. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-9.	1.9	6
3	Laser-induced activation of Mg-doped GaN: quantitative characterization and analysis. Journal Physics D: Applied Physics, 2022, 55, 185104.	1.3	3
4	Photon-induced degradation of InGaN-based LED in open-circuit conditions investigated by steady-state photocapacitance and photoluminescence. Journal of Applied Physics, 2022, 131, .	1.1	3
5	Trap-state mapping to model GaN transistors dynamic performance. Scientific Reports, 2022, 12, 1755.	1.6	10
6	Defects and Reliability of GaNâ€Based LEDs: Review and Perspectives. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	28
7	Reliability of Commercial UVC LEDs: 2022 State-of-the-Art. Electronics (Switzerland), 2022, 11, 728.	1.8	20
8	Modeling the effect of spatial position and concentration of defects on optical degradation of $InGaN/GaN$ multi quantum well light emitting diodes., 2022,,.		0
9	Role of carbon in dynamic effects and reliability of 0.15-um AlGaN/GaN HEMTs for RF power amplifiers. , 2022, , .		1
10	UV LED reliability: degradation mechanisms and challenges. , 2022, , .		2
11	Failure Physics and Reliability of GaNâ€Based HEMTs for Microwave and Millimeterâ€Wave Applications: A Review of Consolidated Data and Recent Results. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	6
12	Conduction properties and threshold voltage instability in \hat{l}^2 -Ga2O3 MOSFETs. , 2022, , .		2
13	GaN-based solar cells degradation kinetics investigated at high temperature under high-intensity 405nm optical stress. , 2022, , .		1
14	Analysis and design of SARS-CoV-2 disinfection chambers based on UVC LEDs. , 2022, , .		0
15	Optical degradation of InAs quantum-dot lasers on silicon: dependence on temperature and on diffusion processes. , 2022, , .		O
16	Defects in III-N LEDs: experimental identification and impact on electro-optical characteristics. , 2022, , .		0
17	Investigation of deep level defects in n-type GaAsBi. , 2022, , .		О
18	Deep levels and conduction processes in nitrogen-implanted Ga2O3 Schottky barrier diodes. , 2022, , .		0

#	Article	IF	Citations
19	On the performance and reliability of state-of-the-art commercial UV-C LEDs for disinfection purposes., 2022,,.		О
20	Deep defects in InGaN LEDs: modeling the impact on the electrical characteristics. , 2022, , .		0
21	Study and characterization of GaN MOS capacitors: Planar vs trench topographies. Applied Physics Letters, 2022, 120, .	1.5	3
22	Logarithmic trapping and detrapping in <i>$^{\hat{1}^2}$</i> -Ga2O3 MOSFETs: Experimental analysis and modeling. Applied Physics Letters, 2022, 120, .	1.5	8
23	Influence of Drain and Gate Potential on Gate Failure in Semi-Vertical GaN-on-Si Trench MOSFETs., 2022,,.		1
24	Deep level effects and degradation of 0.15 \hat{l} 4m RF AlGaN/GaN HEMTs with Mono-layer and Bi-layer AlGaN backbarrier. , 2022, , .		0
25	GaN RF HEMT Reliability: Impact of Device Processing on I-V Curve Stability and Current Collapse. , 2022, , .		1
26	Modeling Hot-Electron Trapping in GaN-based HEMTs. , 2022, , .		1
27	Quantum efficiency of InGaN–GaN multi-quantum well solar cells: Experimental characterization and modeling. Journal of Applied Physics, 2022, 131, .	1.1	4
28	Compact Modeling of Nonideal Trapping/Detrapping Processes in GaN Power Devices. IEEE Transactions on Electron Devices, 2022, 69, 4432-4437.	1.6	2
29	Degradation of 1.3 $\hat{1}$ /4m InAs Quantum-Dot Laser Diodes: Impact of Dislocation Density and Number of Quantum Dot Layers. IEEE Journal of Quantum Electronics, 2021, 57, 1-8.	1.0	12
30	Full Optical Contactless Thermometry Based on LED Photoluminescence. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	6
31	Degradation mechanisms of InGaN visible LEDs and AlGaN UV LEDs. , 2021, , 273-312.		6
32	GaN-on-silicon transistors with reduced current collapse and improved blocking voltage by means of local substrate removal. Applied Physics Express, 2021, 14, 036501.	1.1	9
33	Data-driven estimation of change points reveals correlation between face mask use and accelerated curtailing of the first wave of the COVID-19 epidemic in Italy. Infectious Diseases, 2021, 53, 243-251.	1.4	10
34	Gradual Degradation of InGaAs LEDs: Impact on Non-Radiative Lifetime and Extraction of Defect Characteristics. Materials, 2021, 14, 1114.	1.3	9
35	"Hole Redistribution―Model Explaining the Thermally Activated <i>R</i> _{ON} Stress/Recovery Transients in Carbon-Doped AlGaN/GaN Power MIS-HEMTs. IEEE Transactions on Electron Devices, 2021, 68, 697-703.	1.6	36
36	A Generalized Approach to Determine the Switching Reliability of GaN HEMTs on-Wafer Level. , 2021, , .		4

#	Article	IF	Citations
37	Understanding the Leakage Mechanisms and Breakdown Limits of Vertical GaN-on-Si p+nâ^'n Diodes: The Road to Reliable Vertical MOSFETs. Micromachines, 2021, 12, 445.	1.4	12
38	Inactivating SARS-CoV-2 Using 275 nm UV-C LEDs through a Spherical Irradiation Box: Design, Characterization and Validation. Materials, 2021, 14, 2315.	1.3	24
39	Challenges and Perspectives for Vertical GaN-on-Si Trench MOS Reliability: From Leakage Current Analysis to Gate Stack Optimization. Materials, 2021, 14, 2316.	1.3	15
40	A Novel Physics-Based Approach to Analyze and Model $\langle i \rangle$ E $\langle i \rangle$ -Mode p-GaN Power HEMTs. IEEE Transactions on Electron Devices, 2021, 68, 1489-1494.	1.6	25
41	Influence of Carbon on pBTI Degradation in GaN-on-Si E-Mode MOSc-HEMT. IEEE Transactions on Electron Devices, 2021, 68, 2017-2024.	1.6	6
42	A Physics-Based Approach to Model Hot-Electron Trapping Kinetics in p-GaN HEMTs. IEEE Electron Device Letters, 2021, 42, 673-676.	2.2	25
43	Identification of dislocation-related and point-defects in III-As layers for silicon photonics applications. Journal Physics D: Applied Physics, 2021, 54, 285101.	1.3	7
44	CdTe solar cells: technology, operation and reliability. Journal Physics D: Applied Physics, 2021, 54, 333002.	1.3	25
45	Deep levels and carrier capture kinetics in n-GaAsBi alloys investigated by deep level transient spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 345109.	1.3	11
46	Schottky Gate Induced Threshold Voltage Instabilities in p-GaN Gate AlGaN/GaN HEMTs. IEEE Transactions on Device and Materials Reliability, 2021, 21, 169-175.	1.5	25
47	A new method for CdSexTe1-x band grading for high efficiency thin-absorber CdTe solar cells. Solar Energy Materials and Solar Cells, 2021, 226, 111081.	3.0	17
48	Glass-ceramic composites for high-power white-light-emitting diodes. Ceramics International, 2021, 47, 17986-17992.	2.3	10
49	Electric Field and Self-Heating Effects on the Emission Time of Iron Traps in GaN HEMTs. IEEE Transactions on Electron Devices, 2021, 68, 3325-3332.	1.6	20
50	UV-Based Technologies for SARS-CoV2 Inactivation: Status and Perspectives. Electronics (Switzerland), 2021, 10, 1703.	1.8	30
51	Short term reliability and robustness of ultra-thin barrier, 110Ânm-gate AlN/GaN HEMTs. Microelectronics Reliability, 2021, 123, 114199.	0.9	2
52	Dynamic Performance Characterization Techniques in Gallium Nitride-Based Electronic Devices. Crystals, 2021, 11, 1037.	1.0	4
53	Modeling the electrical characteristics of InGaN/GaN LED structures based on experimentally-measured defect characteristics. Journal Physics D: Applied Physics, 2021, 54, 425105.	1.3	21
54	Effect of indium content and carrier distribution on the efficiency and reliability of InGaN/GaN-based multi quantum well light emitting diode. Microelectronics Reliability, 2021, 126, 114377.	0.9	1

#	Article	IF	Citations
55	Effects of quantum-well indium content on deep defects and reliability of InGaN/GaN light-emitting diodes with under layer. Journal Physics D: Applied Physics, 2021, 54, 505108.	1.3	11
56	Drain Field Plate Impact on the Hard-Switching Performance of AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2021, 68, 5003-5008.	1.6	8
57	Effects of CdTe selenization on the electrical properties of the absorber for the fabrication of CdSexTe1-x/CdTe based solar cells. Solar Energy, 2021, 227, 8-12.	2.9	8
58	Defect incorporation in In-containing layers and quantum wells: experimental analysis via deep level profiling and optical spectroscopy. Journal Physics D: Applied Physics, 2021, 54, 025108.	1.3	20
59	Vertical 3D gallium nitride field-effect transistors based on fin structures with inverted p-doped channel. Semiconductor Science and Technology, 2021, 36, 014002.	1.0	13
60	Nonequilibrium Green's Function Modeling of Trap-Assisted Tunneling in <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ln</mml:mi><mml:mi>x</mml:mi> /mml:mi> /GaN Light-Emitting Diodes. Physical</mml:msub></mml:math>	>G a .s mm	l:mi≯ <mml:mr< td=""></mml:mr<>
61	Review Applied, 2021, 16, . Vertical GaN devices: Process and reliability. Microelectronics Reliability, 2021, 126, 114218.	0.9	9
62	Charge trapping in $0.1\hat{A}\hat{l}\frac{1}{4}$ m AlGaN/GaN RF HEMTs: Dependence on barrier properties, voltage and temperature. Microelectronics Reliability, 2021, 126, 114259.	0.9	0
63	Degradation mechanisms of $1.3 {\hat {\rm Ai}} / {\rm m}$ C-doped quantum dot lasers grown on native substrate. Microelectronics Reliability, 2021, , 114222.	0.9	1
64	Electrical, optical characterization and degradation of Cu(InGa)Se2 devices with fluorine-doped tin oxide back contact. Microelectronics Reliability, 2021, 126, 114260.	0.9	1
65	Hot electron effects in AlGaN/GaN HEMTs during hard-switching events. Microelectronics Reliability, 2021, 126, 114208.	0.9	3
66	Non-monotonic threshold voltage variation in 4H-SiC metal–oxide–semiconductor field-effect transistor: Investigation and modeling. Journal of Applied Physics, 2021, 130, .	1.1	9
67	Positive and negative charge trapping GaN HEMTs: Interplay between thermal emission and transport-limited processes. Microelectronics Reliability, 2021, 126, 114255.	0.9	7
68	Impact of an AlGaN spike in the buffer in 0.15Âμm AlGaN/GaN HEMTs during step stress. Microelectronics Reliability, 2021, 126, 114318.	0.9	2
69	Failure mechanisms of GaN HEMTs for microwave and millimeter-wave applications: from interdiffusion effects to hot-electrons degradation. , 2021, , .		2
70	Review on the degradation of GaN-based lateral power transistors. E-Prime, 2021, 1, 100018.	2.1	3
71	Analysis of Se Co-evaporation and Post-selenization for Sb ₂ Se ₃ -Based Solar Cells. ACS Applied Energy Materials, 2021, 4, 12479-12486.	2.5	13
72	GaN-based power devices: Physics, reliability, and perspectives. Journal of Applied Physics, 2021, 130, .	1.1	191

#	Article	IF	CITATIONS
73	Understanding the effects of off-state and hard-switching stress in gallium nitride-based power transistors. Semiconductor Science and Technology, 2021, 36, 014001.	1.0	10
74	A Review of the Reliability of Integrated IR Laser Diodes for Silicon Photonics. Electronics (Switzerland), 2021, 10, 2734.	1.8	6
75	Current crowding as a major cause for InGaN LED degradation at extreme high current density. , 2021, , .		O
76	Microstructural Degradation Investigations of OFF-State Stressed 0.15 \hat{l} 4m RF AlGaN/GaN HEMTs: Failure Mode related Breakdown., 2021,,.		0
77	Dynamic and Capacitive Characterization of 3D GaN n-p-n Vertical Fin-FETs., 2021,,.		0
78	Detrapping Kinetics in N-polar AlGaN/GaN MIS-HEMTs. , 2021, , .		1
79	Impact of thermal annealing on deep levels in nitrogen-implanted \hat{l}^2 -Ga2O3 Schottky barrier diodes. Journal of Applied Physics, 2021, 130, .	1.1	3
80	Charge Trapping in GaN Power Transistors: Challenges and Perspectives. , 2021, , .		4
81	Investigation of Current-Driven Degradation of $1.3 < i > \hat{1} \frac{1}{4} < i> m$ Quantum-Dot Lasers Epitaxially Grown on Silicon. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-8.	1.9	13
82	Low Onâ€Resistance and Low Trapping Effects in 1200 V Superlattice GaNâ€onâ€Silicon Heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900687.	0.8	7
83	Degradation Mechanisms of GaNâ€Based Vertical Devices: A Review. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900750.	0.8	8
84	Vertical breakdown of GaN on Si due to V-pits. Journal of Applied Physics, 2020, 127, .	1.1	24
85	High Breakdown Voltage and Low Buffer Trapping in Superlattice GaN-on-Silicon Heterostructures for High Voltage Applications. Materials, 2020, 13, 4271.	1.3	14
86	Cause and Effects of OFF-State Degradation in Hydrogen-Terminated Diamond MESFETs. IEEE Transactions on Electron Devices, 2020, 67, 4021-4026.	1.6	8
87	The 2020 UV emitter roadmap. Journal Physics D: Applied Physics, 2020, 53, 503001.	1.3	289
88	GaN Vertical p–i–n Diodes in Avalanche Regime: Time-Dependent Behavior and Degradation. IEEE Electron Device Letters, 2020, 41, 1300-1303.	2.2	3
89	Excitation Intensity and Temperature-Dependent Performance of InGaN/GaN Multiple Quantum Wells Photodetectors. Electronics (Switzerland), 2020, 9, 1840.	1.8	13
90	Highly stable threshold voltage in GaN nanowire FETs: The advantages of $\langle i \rangle p \langle i \rangle$ -GaN channel/Al2O3 gate insulator. Applied Physics Letters, 2020, 117, .	1.5	15

#	Article	IF	CITATIONS
91	Surging critical care capacity for COVID-19: Key now and in the future. Progress in Disaster Science, 2020, 8, 100136.	1.4	11
92	GaN-based high-periodicity multiple quantum well solar cells: Degradation under optical and electrical stress. Microelectronics Reliability, 2020, 114, 113802.	0.9	5
93	Charge Trapping and Stability of E-Mode p-gate GaN HEMTs Under Soft- and Hard- Switching Conditions. , 2020, , .		3
94	Hot-Electron Effects in AlGaN/GaN HEMTs Under Semi-ON DC Stress. IEEE Transactions on Electron Devices, 2020, 67, 4602-4605.	1.6	41
95	Geometric Modeling of Thermal Resistance in GaN HEMTs on Silicon. IEEE Transactions on Electron Devices, 2020, 67, 5408-5414.	1.6	4
96	Trapping and Detrapping Mechanisms in $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Gaâ,,Oâ, f Vertical FinFETs Investigated by Electro-Optical Measurements. IEEE Transactions on Electron Devices, 2020, 67, 3954-3959.	1.6	24
97	Degradation mechanisms in high power InGaN semiconductor lasers investigated by electrical, optical, spectral and C-DLTS measurements. Microelectronics Reliability, 2020, 114, 113786.	0.9	0
98	Use of Bilayer Gate Insulator in GaN-on-Si Vertical Trench MOSFETs: Impact on Performance and Reliability. Materials, 2020, 13, 4740.	1.3	12
99	Exploration of gate trench module for vertical GaN devices. Microelectronics Reliability, 2020, 114, 113828.	0.9	6
100	Non thermally-activated transients and buffer traps in GaN transistors with p-type gate: A new method for extracting the activation energy. Microelectronics Reliability, 2020, 114, 113842.	0.9	3
101	A novel on-wafer approach to test the stability of GaN-based devices in hard switching conditions: Study of hot-electron effects. Microelectronics Reliability, 2020, 114, 113830.	0.9	10
102	Degradation mechanism of $0.15 {\rm \hat{A}\hat{I}}^1\!\!/4$ m AlGaN/GaN HEMTs: effects of hot electrons. Microelectronics Reliability, 2020, 114, 113905.	0.9	5
103	OFF-state trapping phenomena in GaN HEMTs: Interplay between gate trapping, acceptor ionization and positive charge redistribution. Microelectronics Reliability, 2020, 114, 113841.	0.9	6
104	Influence of CdTe solar cell properties on stability at high temperatures. Microelectronics Reliability, 2020, 114, 113847.	0.9	6
105	Reliability of H-terminated diamond MESFETs in high power dissipation operating condition. Microelectronics Reliability, 2020, 114, 113898.	0.9	3
106	Degradation of InGaN-based LEDs: Demonstration of a recombination-dependent defect-generation process. Journal of Applied Physics, 2020, 127, .	1.1	20
107	Thermal droop in III-nitride based light-emitting diodes: Physical origin and perspectives. Journal of Applied Physics, 2020, 127, .	1.1	54
108	Storage and release of buffer charge in GaN-on-Si HEMTs investigated by transient measurements. Applied Physics Express, 2020, 13, 074003.	1.1	8

#	Article	IF	CITATIONS
109	On-Wafer Fast Evaluation of Failure Mechanism of $0.25 < i > \hat{1} \frac{1}{4} < i> m AlGaN/GaN HEMTs: Evidence of Sidewall Indiffusion. IEEE Transactions on Electron Devices, 2020, 67, 2765-2770.$	1.6	2
110	Impact of Residual Carbon on Avalanche Voltage and Stability of Polarization-Induced Vertical GaN p-n Junction. IEEE Transactions on Electron Devices, 2020, 67, 3978-3982.	1.6	4
111	Modeling of gate capacitance of GaN-based trench-gate vertical metal-oxide-semiconductor devices. Applied Physics Express, 2020, 13, 024006.	1.1	7
112	Demonstration of Bilayer Gate Insulator for Improved Reliability in GaN-on-Si Vertical Transistors. , 2020, , .		1
113	Reliability Physics of GaN HEMT Microwave Devices: The Age of Scaling. , 2020, , .		7
114	Trap Dynamics Model Explaining the R _{ON} Stress/Recovery Behavior in Carbon-Doped Power AlGaN/GaN MOS-HEMTs. , 2020, , .		11
115	Modeling of the Vertical Leakage Current in AlN/Si Heterojunctions for GaN Power Applications. IEEE Transactions on Electron Devices, 2020, 67, 595-599.	1.6	10
116	Vertical Leakage in GaN-on-Si Stacks Investigated by a Buffer Decomposition Experiment. Micromachines, 2020, 11, 101.	1.4	3
117	Observation of I _D -V _D Kink in N-Polar GaN MIS-HEMTs at Cryogenic Temperatures. IEEE Electron Device Letters, 2020, 41, 345-348.	2.2	15
118	Understanding \$gamma\$ -Ray Induced Instability in AlGaN/GaN HEMTs Using a Physics-Based Compact Model. IEEE Transactions on Electron Devices, 2020, 67, 1126-1131.	1.6	11
119	Fast System to measure the dynamic onâ€resistance of onâ€wafer 600ÂV normally off GaN HEMTs in hardâ€switching application conditions. IET Power Electronics, 2020, 13, 2390-2397.	1.5	12
120	Carrier capture kinetics, deep levels, and isolation properties of $\langle b \rangle \langle i \rangle \hat{l}^2 \langle i \rangle \langle b \rangle$ -Ga2O3 Schottky-barrier diodes damaged by nitrogen implantation. Applied Physics Letters, 2020, 117, .	1.5	20
121	Efficiency and Catastrophic Failure of High-Power Blue GaN LEDs During Extremely High Temperature and Current Stress. IEEE Transactions on Device and Materials Reliability, 2020, 20, 429-435.	1.5	3
122	Modeling the degradation mechanisms of AlGaN-based UV-C LEDs: from injection efficiency to mid-gap state generation. Photonics Research, 2020, 8, 1786.	3.4	27
123	Analysis of threshold voltage instabilities in semi-vertical GaN-on-Si FETs. Applied Physics Express, 2020, 13, 024004.	1.1	17
124	Analysis and design of extreme intensity irradiation devices for research applications., 2020,,.		0
125	Role of defects in the mid-term degradation of UV-B LEDs investigated by optical and DLTS measurements. , 2020, , .		0
126	Degradation and recovery of high-periodicity InGaN/GaN MQWs under optical stress in short-circuit condition. , 2020, , .		0

#	Article	IF	CITATIONS
127	Demonstration of current-dependent degradation of quantum-dot lasers grown on silicon: role of defect diffusion processes., 2020,,.		1
128	Degradation mechanisms of 1.6 W blue semiconductor lasers: effect on subthreshold optical power and power spectral density. , 2020, , .		0
129	Dependence of degradation on InGaN quantum well position: a study based on color coded structures. , 2020, , .		0
130	Charge trapping and degradation of Ga2O3 isolation structures for power electronics., 2020,,.		0
131	GaN-based lateral and vertical devices: physical mechanisms limiting stability and reliability., 2019,,.		3
132	Positive temperature dependence of time-dependent breakdown of GaN-on-Si E-mode HEMTs under positive gate stress. Applied Physics Letters, 2019, 115, .	1.5	25
133	Hot-Electron Effects in GaN GITs and HD-GITs: A Comprehensive Analysis. , 2019, , .		5
134	Influence of Gate Length on pBTI in GaN-on-Si E-Mode MOSc-HEMT. , 2019, , .		4
135	Threshold Voltage Instability Mechanisms in p-GaN Gate AlGaN/GaN HEMTs., 2019,,.		36
136	Degradation processes of 280 nm high power DUV LEDs: impact on parasitic luminescence. Japanese Journal of Applied Physics, 2019, 58, SCCC19.	0.8	19
137	Top-down GaN nanowire transistors with nearly zero gate hysteresis for parallel vertical electronics. Scientific Reports, 2019, 9, 10301.	1.6	32
138	Impact of Sidewall Etching on the Dynamic Performance of GaN-on-Si E-Mode Transistors. , 2019, , .		3
139	Gate Stability and Robustness of In-Situ Oxide GaN Interlayer Based Vertical Trench MOSFETs (OG-FETs). , 2019, , .		1
140	Reliability comparison of AlGaN/GaN HEMTs with different carbon doping concentration. Microelectronics Reliability, 2019, 100-101, 113489.	0.9	7
141	Investigation into trapping modes and threshold instabilities of state-of-art commercial GaN HEMTs. Microelectronics Reliability, 2019, 100-101, 113464.	0.9	2
142	Breakdown Walkout in Polarization-Doped Vertical GaN Diodes. IEEE Transactions on Electron Devices, 2019, 66, 4597-4603.	1.6	9
143	Characterization of charge trapping mechanisms in GaN vertical Fin FETs under positive gate bias. Microelectronics Reliability, 2019, 100-101, 113488.	0.9	9
144	Linearity and robustness evaluation of 150-nm AlN/GaN HEMTs. Microelectronics Reliability, 2019, 100-101, 113388.	0.9	7

#	Article	IF	Citations
145	Investigation of the degradations in power GaN-on-Si MIS-HEMTs subjected to cumulative \hat{I}^3 -ray irradiation. Microelectronics Reliability, 2019, 100-101, 113349.	0.9	3
146	High-Current Stress of UV-B (In)AlGaN-Based LEDs: Defect-Generation and Diffusion Processes. IEEE Transactions on Electron Devices, 2019, 66, 3387-3392.	1.6	24
147	Enhanced semiclassical simulation of InGaN/GaN multi-quantum-well solar cells. , 2019, , .		0
148	$\mbox{\$}$ mu s\$-Range Evaluation of Threshold Voltage Instabilities of GaN-on-Si HEMTs with p-GaN Gate. , 2019, , .		13
149	Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment. Microelectronics Reliability, 2019, 100-101, 113461.	0.9	13
150	ESD-failure of E-mode GaN HEMTs: Role of device geometry and charge trapping. Microelectronics Reliability, 2019, 100-101, 113334.	0.9	13
151	Stability and degradation of isolation and surface in Ga2O3 devices. Microelectronics Reliability, 2019, 100-101, 113453.	0.9	6
152	Stability and degradation of AlGaN-based UV-B LEDs: Role of doping and semiconductor defects. Microelectronics Reliability, 2019, 100-101, 113418.	0.9	16
153	Gate Reliability of p-GaN Gate AlGaN/GaN High Electron Mobility Transistors. IEEE Electron Device Letters, 2019, 40, 379-382.	2.2	21
154	Perimeter Driven Transport in the p-GaN Gate as a Limiting Factor for Gate Reliability. , 2019, , .		27
155	Physical Origin of the Optical Degradation of InAs Quantum Dot Lasers. IEEE Journal of Quantum Electronics, 2019, 55, 1-7.	1.0	16
156	Evidence for defect-assisted tunneling and recombination at extremely low current in InGaN/GaN-based LEDs. Applied Physics Express, 2019, 12, 052007.	1.1	17
157	Demonstration of UV-Induced Threshold Voltage Instabilities in Vertical GaN Nanowire Array-Based Transistors. IEEE Transactions on Electron Devices, 2019, 66, 2119-2124.	1.6	5
158	Investigation of nBTI degradation on GaN-on-Si E-mode MOSc-HEMT., 2019,,.		19
159	Reliability investigation on CdTe solar cells submitted to short-term thermal stress. Microelectronics Reliability, 2019, 100-101, 113490.	0.9	1
160	Hot-Electron Trapping and Hole-Induced Detrapping in GaN-Based GITs and HD-GITs. IEEE Transactions on Electron Devices, 2019, 66, 337-342.	1.6	22
161	Difluorochloromethane treated thin CdS buffer layers for improved CdTe solar cells. Thin Solid Films, 2019, 672, 7-13.	0.8	4
162	Analysis of magnesium zinc oxide layers for high efficiency CdTe devices. Thin Solid Films, 2019, 672, 22-25.	0.8	19

#	Article	IF	Citations
163	The Effect of Proton Irradiation in Suppressing Current Collapse in AlGaN/GaN High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, 2019, 66, 372-377.	1.6	19
164	Reliability of Ultraviolet Light-Emitting Diodes. Solid State Lighting Technology and Application Series, 2019, , 397-424.	0.3	2
165	Origin of the low-forward leakage current in InGaN-based LEDs. , 2019, , .		0
166	Near-UV LED-based systems for low-cost and compact oxygen-sensing systems in gas and liquids. , 2019, , .		0
167	Degradation mechanisms of InAs quantum dot $1.3\ \mathrm{um}$ laser diodes epitaxially grown on silicon. , 2019 , ,		0
168	Challenges for highly-reliable GaN-based LEDs. , 2019, , .		0
169	Degradation physics of GaN-based lateral and vertical devices. , 2019, , .		0
170	Evidence for avalanche generation in reverse-biased InGaN LEDs. , 2019, , .		0
171	2DEG Retraction and Potential Distribution of GaN–on–Si HEMTs Investigated Through a Floating Gate Terminal. IEEE Transactions on Electron Devices, 2018, 65, 1303-1307.	1.6	12
172	The 2018 GaN power electronics roadmap. Journal Physics D: Applied Physics, 2018, 51, 163001.	1.3	843
173	Chip-Level Degradation of InGaN-Based Optoelectronic Devices. Solid State Lighting Technology and Application Series, 2018, , 15-48.	0.3	0
174	Trapping phenomena and degradation mechanisms in GaN-based power HEMTs. Materials Science in Semiconductor Processing, 2018, 78, 118-126.	1.9	75
175	Positive and negative threshold voltage instabilities in GaN-based transistors. Microelectronics Reliability, 2018, 80, 257-265.	0.9	26
176	Impact of dislocations on DLTS spectra and degradation of InGaN-based laser diodes. Microelectronics Reliability, 2018, 88-90, 864-867.	0.9	4
177	Demonstration of avalanche capability in polarization-doped vertical GaN pn diodes: study of walkout due to residual carbon concentration. , 2018 , , .		10
178	Power GaN HEMT degradation: from time-dependent breakdown to hot-electron effects. , 2018, , .		6
179	Analysis and Reliability Study of Luminescent Materials for White Lighting. Proceedings (mdpi), 2018, 2,	0.2	1
180	Degradation of GaN-on-GaN vertical diodes submitted to high current stress. Microelectronics Reliability, 2018, 88-90, 568-571.	0.9	9

#	Article	IF	CITATIONS
181	Failure limits and electro-optical characteristics of GaN-based LEDs under electrical overstress. Microelectronics Reliability, 2018, 88-90, 887-890.	0.9	4
182	Gate Conduction Mechanisms and Lifetime Modeling of p-Gate AlGaN/GaN High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, 2018, 65, 5365-5372.	1.6	65
183	Degradation of vertical GaN-on-GaN fin transistors: Step-stress and constant voltage experiments. Microelectronics Reliability, 2018, 88-90, 620-626.	0.9	5
184	On-wafer RF stress and trapping kinetics of Fe-doped AlGaN/GaN HEMTs. Microelectronics Reliability, 2018, 88-90, 397-401.	0.9	3
185	Impact of the substrate and buffer design on the performance of GaN on Si power HEMTs. Microelectronics Reliability, 2018, 88-90, 584-588.	0.9	15
186	Current induced degradation study on state of the art DUV LEDs. Microelectronics Reliability, 2018, 88-90, 868-872.	0.9	20
187	Evaluation of novel carrier substrates for high reliability and integrated GaN devices in a 200 mm complementary metal-oxide semiconductor compatible process. MRS Communications, 2018, 8, 1387-1394.	0.8	3
188	Impact of sidewall etching on the dynamic performance of GaN-on-Si E-mode transistors. Microelectronics Reliability, 2018, 88-90, 572-576.	0.9	16
189	Degradation mechanisms of heterogeneous III-V/Silicon loop-mirror laser diodes for photonic integrated circuits. Microelectronics Reliability, 2018, 88-90, 855-858.	0.9	8
190	Evidence of optically induced degradation in gallium nitride optoelectronic devices. Applied Physics Express, 2018, 11, 111002.	1.1	9
191	Reliability of Blue-Emitting Eu2+-Doped Phosphors for Laser-Lighting Applications. Materials, 2018, 11, 1552.	1.3	1
192	Reliability of GaN-Based Power Devices. Integrated Circuits and Systems, 2018, , 75-99.	0.2	0
193	Degradation of vertical GaN FETs under gate and drain stress. , 2018, , .		8
194	On the origin of the leakage current in p-gate AlGaN/GaN HEMTs. , 2018, , .		34
195	Failures of LEDs in Real-World Applications: A Review. IEEE Transactions on Device and Materials Reliability, 2018, 18, 391-396.	1.5	20
196	Physical mechanisms limiting the performance and the reliability of GaN-based LEDs., 2018,, 455-489.		9
197	Dynamic-ron control via proton irradiation in AlGaN/GaN transistors. , 2018, , .		3
198	Review of dynamic effects and reliability of depletion and enhancement GaN HEMTs for power switching applications. IET Power Electronics, 2018, 11, 668-674.	1.5	24

#	Article	IF	CITATIONS
199	GaN-Based Laser Wireless Power Transfer System. Materials, 2018, 11, 153.	1.3	26
200	Study and Development of a Fluorescence Based Sensor System for Monitoring Oxygen in Wine Production: The WOW Project. Sensors, 2018, 18, 1130.	2.1	17
201	Observation of Hot Electron and Impact Ionization in N-Polar GaN MIS-HEMTs. IEEE Electron Device Letters, 2018, 39, 1007-1010.	2.2	23
202	Impact of Substrate Resistivity on the Vertical Leakage, Breakdown, and Trapping in GaN-on-Si E-Mode HEMTs. IEEE Transactions on Electron Devices, 2018, 65, 2765-2770.	1.6	35
203	Degradation Mechanisms of GaN HEMTs With p-Type Gate Under Forward Gate Bias Overstress. IEEE Transactions on Electron Devices, 2018, 65, 2778-2783.	1.6	51
204	Defect-generation and diffusion in (In)AlGaN-based UV-B LEDs submitted to constant current stress. , 2018, , .		3
205	White-light sources based on GaN laser diodes: analysis and application study. , 2018, , .		0
206	Defect-related degradation of III-V/Silicon 1.55 µm DBR laser diodes. , 2018, , .		0
207	Degradation processes and origin in InGaN-based high-power photodetectors. , 2018, , .		0
208	Secondary Electroluminescence of GaN-on-Si RF HEMTs: Demonstration and Physical Origin. IEEE Transactions on Electron Devices, 2017, 64, 1032-1037.	1.6	2
209	GaN HEMTs with p-GaN gate: field- and time-dependent degradation. , 2017, , .		2
210	Time-Dependent Breakdown Mechanisms and Reliability Improvement in Edge Terminated AlGaN/GaN Schottky Diodes Under HTRB Tests. IEEE Electron Device Letters, 2017, 38, 371-374.	2.2	32
211	Potential induced degradation of N-type bifacial silicon solar cells: An investigation based on electrical and optical measurements. Solar Energy Materials and Solar Cells, 2017, 168, 51-61.	3.0	35
212	Field-Related Failure of GaN-on-Si HEMTs: Dependence on Device Geometry and Passivation. IEEE Transactions on Electron Devices, 2017, 64, 73-77.	1.6	18
213	Reliability and failure analysis in power GaN-HEMTs: An overview. , 2017, , .		53
214	Electrical Properties, Reliability Issues, and ESD Robustness of InGaN-Based LEDs. Topics in Applied Physics, 2017, , 363-395.	0.4	1
215	Degradation Mechanisms of Heterogeneous III-V/Silicon 1.55- $mu ext{m}$ DBR Laser Diodes. IEEE Journal of Quantum Electronics, 2017, 53, 1-8.	1.0	12
216	Characterization of Defects in AlGaN/GaN HEMTs Based on Nonlinear Microwave Current Transient Spectroscopy. IEEE Transactions on Electron Devices, 2017, 64, 2135-2141.	1.6	9

#	Article	IF	Citations
217	Defect generation in deep-UV AlGaN-based LEDs investigated by electrical and spectroscopic characterisation. Proceedings of SPIE, 2017, , .	0.8	3
218	Investigation of the time-dependent failure of InGaN-based LEDs submitted to reverse-bias stress. Proceedings of SPIE, 2017, , .	0.8	1
219	Failure of High Power LEDs Submitted to EOS: Dependence on Device Layout and Pulse Properties. IEEE Transactions on Device and Materials Reliability, 2017, 17, 191-196.	1.5	6
220	Defect-Related Degradation of AlGaN-Based UV-B LEDs. IEEE Transactions on Electron Devices, 2017, 64, 200-205.	1.6	62
221	Evidence of Hot-Electron Effects During Hard Switching of AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2017, 64, 3734-3739.	1.6	90
222	Negative dynamic Ron in AlGaN/GaN power devices. , 2017, , .		15
223	Long-term degradation of InGaN-based laser diodes: Role of defects. Microelectronics Reliability, 2017, 76-77, 584-587.	0.9	3
224	Field- and current-driven degradation of GaN-based power HEMTs with p-GaN gate: Dependence on Mg-doping level. Microelectronics Reliability, 2017, 76-77, 298-303.	0.9	25
225	Evidence of Time-Dependent Vertical Breakdown in GaN-on-Si HEMTs. IEEE Transactions on Electron Devices, 2017, 64, 3616-3621.	1.6	43
226	Effect of Varying Three-Dimensional Strain on the Emission Properties of Light-Emitting Diodes Based on (In,Ga)N/GaN Nanowires. Physical Review Applied, 2017, 7, .	1.5	4
227	Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN. Journal of Applied Physics, 2017, 122, 174101.	1.1	4
228	Degradation of InGaN-based MQW solar cells under 405 nm laser excitation. Microelectronics Reliability, 2017, 76-77, 575-578.	0.9	5
229	GaN-based MIS-HEMTs: Impact of cascode-mode high temperature source current stress on NBTI shift. , 2017, , .		10
230	Instability of Dynamic- \$R_{ext ON}\$ and Threshold Voltage in GaN-on-GaN Vertical Field-Effect Transistors. IEEE Transactions on Electron Devices, 2017, 64, 3126-3131.	1.6	21
231	Field and hot electron-induced degradation in GaN-based power MIS-HEMTs. Microelectronics Reliability, 2017, 76-77, 282-286.	0.9	5
232	Understanding the degradation processes of GaN based LEDs submitted to extremely high current density. Microelectronics Reliability, 2017, 76-77, 556-560.	0.9	13
233	Performance-Limiting Traps in GaN-Based HEMTs: From Native Defects to Common Impurities. Power Electronics and Power Systems, 2017, , 197-236.	0.6	9
234	Temperature dependent substrate trapping in AlGaN/GaN power devices and the impact on dynamic ron. , 2017, , .		8

#	Article	IF	Citations
235	Total suppression of dynamic-ron in AlGaN/GaN-HEMTs through proton irradiation. , 2017, , .		14
236	Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs. Photonics Research, 2017, 5, A44.	3.4	36
237	Technology and Reliability of Normally-Off GaN HEMTs with p-Type Gate. Energies, 2017, 10, 153.	1.6	104
238	Laser-Based Lighting: Experimental Analysis and Perspectives. Materials, 2017, 10, 1166.	1.3	44
239	Degradation of GaN-HEMTs with p-GaN Gate: Dependence on temperature and on geometry. , 2017, , .		17
240	Internal checkup illumination sources for METIS coronagraph on solar orbiter., 2017,,.		1
241	Trapping And Degradation Mechanisms In Gan-Based Hemts. , 2017, , 327-361.		0
242	Gate Stability of GaN-Based HEMTs with P-Type Gate. Electronics (Switzerland), 2016, 5, 14.	1.8	31
243	Reliability of mid-power LEDs for lighting applications. , 2016, , .		O
244	High-Resolution Cathodoluminescence Investigation of Degradation Processes in InGaN Green Laser Diodes. Microscopy and Microanalysis, 2016, 22, 1738-1739.	0.2	1
245	Drain current transient and low-frequency dispersion characterizations in AlGaN/GaN HEMTs. International Journal of Microwave and Wireless Technologies, 2016, 8, 663-672.	1.5	13
246	On trapping mechanisms at oxide-traps in Al2O3/GaN metal-oxide-semiconductor capacitors. Applied Physics Letters, 2016, 108, .	1.5	43
247	A physical model for the reverse leakage current in (In,Ga)N/GaN light-emitting diodes based on nanowires. Journal of Applied Physics, 2016, 119, .	1.1	33
248	Role of defects in the thermal droop of InGaN-based light emitting diodes. Journal of Applied Physics, 2016, 119, .	1.1	55
249	Adaptive multi-wavelength LED star simulator for space life studies. , 2016, , .		6
250	Time-Dependent Failure of GaN-on-Si Power HEMTs With p-GaN Gate. IEEE Transactions on Electron Devices, 2016, 63, 2334-2339.	1.6	111
251	Experimental Demonstration of Time-Dependent Breakdown in GaN-Based Light Emitting Diodes. IEEE Electron Device Letters, 2016, 37, 611-614.	2.2	10
252	Reliability and parasitic issues in GaN-based power HEMTs: a review. Semiconductor Science and Technology, 2016, 31, 093004.	1.0	108

#	Article	IF	CITATIONS
253	Experimental observation of TDDB-like behavior in reverse-biased green InGaN LEDs. Microelectronics Reliability, 2016, 64, 610-613.	0.9	3
254	Study of the stability of e-mode GaN HEMTs with p-GaN gate based on combined DC and optical analysis. Microelectronics Reliability, 2016, 64, 547-551.	0.9	15
255	Potential induced degradation in high-efficiency bifacial solar cells. , 2016, , .		2
256	Quality and reliability of in-situ Al2O3 MOS capacitors for GaN-based power devices. , 2016, , .		9
257	Comparison of high efficiency flexible CdTe solar cells on different substrates at low temperature deposition. Solar Energy, 2016, 139, 13-18.	2.9	39
258	Degradation of InGaN laser diodes caused by temperature- and current-driven diffusion processes. Microelectronics Reliability, 2016, 64, 623-626.	0.9	24
259	Degradation of InGaN-based LEDs related to charge diffusion and build-up. Microelectronics Reliability, 2016, 64, 614-616.	0.9	7
260	Field-dependent degradation mechanisms in GaN-based HEMTs. , 2016, , .		1
261	Experimental and Numerical Analysis of Hole Emission Process From Carbon-Related Traps in GaN Buffer Layers. IEEE Transactions on Electron Devices, 2016, 63, 3473-3478.	1.6	76
262	Non-linear electro-thermal AlGaN/GaN model including large-signal dynamic thermal-trapping effects. , $2016, , .$		10
263	Continuous time-domain RF waveforms monitoring under overdrive stress condition of AlGaN/GaN HEMTs. Microelectronics Reliability, 2016, 64, 535-540.	0.9	0
264	Experimental demonstration of weibull distributed failure in p-type GaN high electron mobility transistors under high forward bias stress. , 2016 , , .		8
265	Evidence of Hot-Electron Degradation in GaN-Based MIS-HEMTs Submitted to High Temperature Constant Source Current Stress. IEEE Electron Device Letters, 2016, 37, 1415-1417.	2.2	32
266	Reliability of power devices: Bias-induced threshold voltage instability and dielectric breakdown in GaN MIS-HEMTs. , $2016, , .$		4
267	Degradation of UV-A LEDs: Physical Origin and Dependence on Stress Conditions. IEEE Transactions on Device and Materials Reliability, 2016, 16, 213-219.	1.5	23
268	(Invited) Intrinsic Reliability Assessment of 650V Rated AlGaN/GaN Based Power Devices: An Industry Perspective. ECS Transactions, 2016, 72, 65-76.	0.3	25
269	Reliability of Gallium Nitride microwave transistors. , 2016, , .		5
270	High voltage trapping effects in GaN-based metal–insulator–semiconductor transistors. Japanese Journal of Applied Physics, 2016, 55, 01AD04.	0.8	17

#	Article	IF	Citations
271	Trapping and reliability issues in GaN-based MIS HEMTs with partially recessed gate. Microelectronics Reliability, 2016, 58, 151-157.	0.9	38
272	Thermal droop in InGaN-based LEDs: physical origin and dependence on material properties. , 2016, , .		0
273	Negative Bias-Induced Threshold Voltage Instability in GaN-on-Si Power HEMTs. IEEE Electron Device Letters, 2016, 37, 474-477.	2.2	102
274	Nanoscale Investigation of Degradation and Wavelength Fluctuations in InGaN-Based Green Laser Diodes. IEEE Nanotechnology Magazine, 2016, 15, 274-280.	1.1	10
275	Challenges towards the simulation of GaN-based LEDs beyond the semiclassical framework. Proceedings of SPIE, 2016, , .	0.8	6
276	On-Wafer Single-Pulse Thermal Load–Pull RF Characterization of Trapping Phenomena in AlGaN/GaN HEMTs. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-9.	2.9	14
277	Aging behavior, reliability, and failure physics of GaN-based optoelectronic components. Proceedings of SPIE, 2016, , .	0.8	0
278	Normally-off GaN-HEMTs with p-type gate: Off-state degradation, forward gate stress and ESD failure. Microelectronics Reliability, 2016, 58, 177-184.	0.9	23
279	Reverse bias degradation of metal wrap through silicon solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 288-294.	3.0	5
280	Degradation of InGaN based green laser kinetics and driving forces diodes. , 2015, , .		0
281	Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes. AIP Advances, 2015, 5, 107121.	0.6	1
282	Impact of buffer leakage on intrinsic reliability of 650V AlGaN/GaN HEMTs. , 2015, , .		34
283	Defect-related tunneling contributions to subthreshold forward current in GaN-Based LEDs. , 2015, , .		0
284	Degradation mechanisms and lifetime of stateâ€ofâ€theâ€art green laser diodes. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 974-979.	0.8	9
285	Physicsâ€based modeling and experimental implications of trapâ€assisted tunneling in InGaN/GaN lightâ€emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 947-953.	0.8	77
286	Impact of solder-joint tilting on the reliability of LED-based PCB assemblies: A combined experimental and FEM analysis. , 2015 , , .		3
287	Evidence for temperature-dependent buffer-induced trapping in GaN-on-silicon power transistors. , 2015, , .		5
288	Effects and exploitation of tunable white light for circadian rhythm and human-centric lighting. , 2015, , .		7

#	Article	IF	Citations
289	Notice of Removal: Analysis of the mechanisms limiting the reliability of retrofit LED lamps. , 2015, , .		O
290	Towards high reliability GaN LEDs: Understanding the physical origin of gradual and catastrophic failure. , 2015 , , .		3
291	Trap characterization of AlGaN/GaN HEMTs through drain current measurements under pulsed-RF large-signal excitation. , 2015, , .		8
292	InGaN-based optoelectronic devices: Loss mechanisms and degradation processes. , 2015, , .		0
293	Reliability and failure physics of GaN HEMT, MIS-HEMT and p-gate HEMTs for power switching applications: Parasitic effects and degradation due to deep level effects and time-dependent breakdown phenomena., 2015,,.		22
294	Trap investigation under class AB operation in AlGaN/GaN HEMTs based on output-admittance frequency dispersion, pulsed and transient measurements. , 2015, , .		6
295	Semiclassical simulation of trap-assisted tunneling in GaN-based light-emitting diodes. Journal of Computational Electronics, 2015, 14, 444-455.	1.3	34
296	High PAE high reliability AlN/GaN double heterostructure. Solid-State Electronics, 2015, 113, 49-53.	0.8	4
297	Impact of proton fluence on DC and trapping characteristics in InAlN/GaN HEMTs. Solid-State Electronics, 2015, 113, 15-21.	0.8	5
298	Ageing of InGaN-based LEDs: Effects on internal quantum efficiency and role of defects. Microelectronics Reliability, 2015, 55, 1775-1778.	0.9	33
299	Failure causes and mechanisms of retrofit LED lamps. Microelectronics Reliability, 2015, 55, 1765-1769.	0.9	17
300	Analysis of off-state leakage mechanisms in GaN-based MIS-HEMTs: Experimental data and numerical simulation. Solid-State Electronics, 2015, 113, 9-14.	0.8	7
301	Long-term degradation mechanisms of mid-power LEDs for lighting applications. Microelectronics Reliability, 2015, 55, 1754-1758.	0.9	36
302	Trapping processes related to iron and carbon doping in AlGaN/GaN power HEMTs. , 2015, , .		0
303	Temperature-Dependent Dynamic <inline-formula> <tex-math notation="LaTeX">\$R_{mathrm {mathrm{{scriptstyle ON}}}}\$ </tex-math></inline-formula> in GaN-Based MIS-HEMTs: Role of Surface Traps and Buffer Leakage. IEEE Transactions on Electron Devices, 2015, 62, 782-787.	1.6	91
304	Defects in GaN-based LEDs: impact on internal quantum efficiency and on reliability. Proceedings of SPIE, $2015, \ldots$	0.8	0
305	Deep level transient spectroscopy on light-emitting diodes based on (In,Ga)N/GaN nanowire ensembles. Proceedings of SPIE, 2015 , , .	0.8	2
306	Trapping mechanisms in GaNâ€based MISâ€HEMTs grown on silicon substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1122-1129.	0.8	63

#	Article	IF	CITATIONS
307	Trapping induced parasitic effects in GaN-HEMT for power switching applications., 2015,,.		7
308	A tunable integrated system to simulate colder stellar radiation. , 2015, , .		2
309	Hot-Electron Degradation of AlGaN/GaN High-Electron Mobility Transistors During RF Operation: Correlation With GaN Buffer Design. IEEE Electron Device Letters, 2015, 36, 1011-1014.	2.2	28
310	Extensive Investigation of Time-Dependent Breakdown of GaN-HEMTs Submitted to OFF-State Stress. IEEE Transactions on Electron Devices, 2015, 62, 2549-2554.	1.6	45
311	Effects of buffer compensation strategies on the electrical performance and RF reliability of AlGaN/GaN HEMTs. Microelectronics Reliability, 2015, 55, 1662-1666.	0.9	9
312	Impact of gate insulator on the dc and dynamic performance of AlGaN/GaN MIS-HEMTs. Microelectronics Reliability, 2015, 55, 1692-1696.	0.9	14
313	Trap-assisted tunneling contributions to subthreshold forward current in InGaN/GaN light-emitting diodes. , 2015, , .		2
314	Stress-induced instabilities of shunt paths in high efficiency MWT solar cells. , 2015, , .		0
315	Demonstration of Field- and Power-Dependent ESD Failure in AlGaN/GaN RF HEMTs. IEEE Transactions on Electron Devices, 2015, 62, 2830-2836.	1.6	32
316	On the impact of carbon-doping on the dynamic Ron and off-state leakage current of 650V GaN power devices. , 2015, , .		60
317	Modeling challenges for high-efficiency visible light-emitting diodes. , 2015, , .		3
318	Analysis of slow de-trapping phenomena after a positive gate bias on AlGaN/GaN MIS-HEMTs with in-situ Si3N4/Al2O3 bilayer gate dielectrics. Solid-State Electronics, 2015, 103, 127-130.	0.8	16
319	Characterization of high-voltage charge-trapping effects in GaN-based power HEMTs. , 2014, , .		2
320	Influence of Shunt Resistance on the Performance of an Illuminated String of Solar Cells: Theory, Simulation, and Experimental Analysis. IEEE Transactions on Device and Materials Reliability, 2014, 14, 942-950.	1.5	33
321	Degradation of dc and pulsed characteristics of InAlN/GaN HEMTs under different proton fluences. , 2014, , .		2
322	Breakdown investigation in GaN-based MIS-HEMT devices. , 2014, , .		7
323	Trapping and high field related issues in GaN power HEMTs. , 2014, , .		15
324	Reliability and instabilities in GaN-based HEMTs. , 2014, , .		12

#	Article	IF	CITATIONS
325	Microscopic, electrical and optical studies on InGaN/GaN quantum wells based LED devices., 2014,,.		2
326	Carrier capture efficiency in InGaN/GaN LEDs: Role of high temperature annealing. AIP Conference Proceedings, $2014, \ldots$	0.3	3
327	Recoverable degradation of blue InGaN-based light emitting diodes submitted to 3 MeV proton irradiation. Applied Physics Letters, 2014, 105, 213506.	1.5	10
328	High performance high reliability AlN/GaN DHFET. , 2014, , .		1
329	Trap-assisted tunneling in InGaN/GaN LEDs: Experiments and physics-based simulation. , 2014, , .		12
330	GaN-based LEDs: State of the art and reliability-limiting mechanisms. , 2014, , .		4
331	Role of buffer doping and pre-existing trap states in the current collapse and degradation of AlGaN/GaN HEMTs. , 2014 , , .		11
332	Gate frequency sweep: An effective method to evaluate the dynamic performance of AlGaN/GaN power heterojunction field effect transistors. Applied Physics Letters, 2014, 105, 073507.	1.5	3
333	Microscopic-scale investigation of the degradation of InGaN-based laser diodes submitted to electrical stress. , $2014, \ldots$		O
334	Thermal, optical, and electrical engineering of an innovative tunable white LED light engine. , 2014, , .		0
335	Gallium nitride based HEMTs for power applications: High field trapping issues. , 2014, , .		6
336	Buffer Traps in Fe-Doped AlGaN/GaN HEMTs: Investigation of the Physical Properties Based on Pulsed and Transient Measurements. IEEE Transactions on Electron Devices, 2014, 61, 4070-4077.	1.6	139
337	High-voltage double-pulsed measurement system for GaN-based power HEMTs. , 2014, , .		18
338	Characterization of the deep levels responsible for non-radiative recombination in $InGaN/GaN$ light-emitting diodes. Applied Physics Letters, 2014, 104, .	1.5	49
339	ESD degradation and robustness of RGB LEDs and modules: An investigation based on combined electrical and optical measurements. Microelectronics Reliability, 2014, 54, 1143-1149.	0.9	3
340	OFF-State Degradation of AlGaN/GaN Power HEMTs: Experimental Demonstration of Time-Dependent Drain-Source Breakdown. IEEE Transactions on Electron Devices, 2014, 61, 1987-1992.	1.6	35
341	Degradation Mechanisms of High-Power LEDs for Lighting Applications: An Overview. IEEE Transactions on Industry Applications, 2014, 50, 78-85.	3.3	53
342	Dislocation-related trap levels in nitride-based light emitting diodes. Applied Physics Letters, 2014, 104,	1.5	17

#	Article	IF	CITATIONS
343	Trapping in GaN-based metal-insulator-semiconductor transistors: Role of high drain bias and hot electrons. Applied Physics Letters, 2014, 104, .	1.5	59
344	Local Shunting in Multicrystalline Silicon Solar Cells: Distributed Electrical Simulations and Experiments. IEEE Journal of Photovoltaics, 2014, 4, 40-47.	1.5	17
345	Breakdown mechanisms in AlGaN/GaN HEMTs: An overview. Japanese Journal of Applied Physics, 2014, 53, 100211.	0.8	99
346	Thermally-activated degradation of InGaN-based laser diodes: Effect on threshold current and forward voltage. Microelectronics Reliability, 2014, 54, 2147-2150.	0.9	15
347	Influence of different carbon doping on the performance and reliability of InAlN/GaN HEMTs. Microelectronics Reliability, 2014, 54, 2248-2252.	0.9	6
348	Failure signatures on $0.25\hat{l}^{1}\!/\!4$ m GaN HEMTs for high-power RF applications. Microelectronics Reliability, 2014, 54, 2237-2241.	0.9	0
349	Proton induced trapping effect on space compatible GaN HEMTs. Microelectronics Reliability, 2014, 54, 2213-2216.	0.9	16
350	Threshold voltage instabilities in D-mode GaN HEMTs for power switching applications. , 2014, , .		16
351	Traps localization and analysis in GaN HEMTs. Microelectronics Reliability, 2014, 54, 2222-2226.	0.9	9
352	ESD on GaN-based LEDs: An analysis based on dynamic electroluminescence measurements and current waveforms. Microelectronics Reliability, 2014, 54, 2138-2141.	0.9	7
353	Influence of Buffer Carbon Doping on Pulse and AC Behavior of Insulated-Gate Field-Plated Power AlGaN/GaN HEMTs. IEEE Electron Device Letters, 2014, 35, 443-445.	2.2	90
354	Trapping and Reliability Assessment in D-Mode GaN-Based MIS-HEMTs for Power Applications. IEEE Transactions on Power Electronics, 2014, 29, 2199-2207.	5.4	77
355	Correlating electroluminescence characterization and physics-based models of InGaN/GaN LEDs: Pitfalls and open issues. AIP Advances, 2014, 4, .	0.6	29
356	Kinetics of Buffer-Related R _{ON} -Increase in GaN-on-Silicon MIS-HEMTs. IEEE Electron Device Letters, 2014, 35, 1004-1006.	2.2	84
357	Reliability and high field related issues in GaN-HEMT devices — Part I. , 2014, , .		1
358	Analysis of the Reliability of AlGaN/GaN HEMTs Submitted to On-State Stress Based on Electroluminescence Investigation. IEEE Transactions on Device and Materials Reliability, 2013, 13, 357-361.	1.5	34
359	GaN-HEMTs devices with single- and double-heterostructure for power switching applications. , 2013, , .		6
360	Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies. Journal of Applied Physics, 2013, 114, .	1,1	351

#	Article	IF	CITATIONS
361	"Hot-plugging―of LED modules: Electrical characterization and device degradation. Microelectronics Reliability, 2013, 53, 1524-1528.	0.9	7
362	Thermal and electrical investigation of the reverse bias degradation of silicon solar cells. Microelectronics Reliability, 2013, 53, 1809-1813.	0.9	9
363	Reverse-bias stress of high electron mobility transistors: Correlation between leakage current, current collapse and trap characteristics. Microelectronics Reliability, 2013, 53, 1456-1460.	0.9	2
364	Degradation of AlGaN/GaN HEMT devices: Role of reverse-bias and hot electron stress. Microelectronic Engineering, 2013, 109, 257-261.	1.1	41
365	AlGaN/GaN-Based HEMTs Failure Physics and Reliability: Mechanisms Affecting Gate Edge and Schottky Junction. IEEE Transactions on Electron Devices, 2013, 60, 3119-3131.	1.6	117
366	Changes in the Mg profile and in dislocations induced by high temperature annealing of blue LEDs. Proceedings of SPIE, 2013, , .	0.8	0
367	Reliability Analysis of Permanent Degradations on AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 2013, 60, 3132-3141.	1.6	58
368	Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements. IEEE Transactions on Electron Devices, 2013, 60, 3166-3175.	1.6	324
369	Deep Levels Characterization in GaN HEMTsâ€"Part II: Experimental and Numerical Evaluation of Self-Heating Effects on the Extraction of Traps Activation Energy. IEEE Transactions on Electron Devices, 2013, 60, 3176-3182.	1.6	46
370	Comparison of the performances of an InAlN/GaN HEMT with a Mo/Au gate or a Ni/Pt/Au gate. Microelectronics Reliability, 2013, 53, 1476-1480.	0.9	2
371	Highly stable low noise / high power AlN/GaN-on-silicon double heterostructure HEMTs operating at 40 GHz., 2013,,.		1
372	Influence of device self-heating on trap activation energy extraction. , 2013, , .		2
373	Influence of fluorine-based dry etching on electrical parameters of AlGaN/GaN-on-Si High Electron Mobility Transistors. , 2013, , .		6
374	First Reliability Demonstration of Sub-200-nm AlN/GaN-on-Silicon Double-Heterostructure HEMTs for Ka-Band Applications. IEEE Transactions on Device and Materials Reliability, 2013, 13, 480-488.	1.5	16
375	Thermally Activated Degradation of Remote Phosphors for Application in LED Lighting. IEEE Transactions on Device and Materials Reliability, 2013, 13, 316-318.	1.5	40
376	Thermal and electrical characterization of catastrophic degradation of silicon solar cells submitted to reverse current stress. , 2013, , .		3
377	Laboratory PV generator for MPPT dynamic response testing. , 2013, , .		5
378	Variations in junction capacitance and doping activation associated with electrical stress of InGaN/GaN laser diodes. Microelectronics Reliability, 2013, 53, 1534-1537.	0.9	8

#	Article	lF	CITATIONS
379	ESD characterization of multi-chip RGB LEDs. Microelectronics Reliability, 2013, 53, 1510-1513.	0.9	3
380	Electroluminescence and Transmission Electron Microscopy Characterization of Reverse-Biased AlGaN/GaN Devices. IEEE Transactions on Device and Materials Reliability, 2013, 13, 126-135.	1.5	25
381	Characterization and endurance study of aluminate/silicate/garnet/nitride phosphors for high-performance SSL. , 2013 , , .		0
382	Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements. Semiconductor Science and Technology, 2013, 28, 074021.	1.0	71
383	Electrical Properties, Reliability Issues, and ESD Robustness of InGaN-Based LEDs. Topics in Applied Physics, 2013, , 197-229.	0.4	4
384	Degradation of AlGaN/GaN Schottky diodes on silicon: Role of defects at the AlGaN/GaN interface. Applied Physics Letters, 2013, 102, .	1.5	26
385	GaN-Based Power HEMTs: Parasitic, Reliability and High Field Issues. ECS Transactions, 2013, 58, 187-198.	0.3	17
386	Degradation of InGaN/GaN laser diodes investigated by micro-cathodoluminescence and micro-photoluminescence. Applied Physics Letters, 2013, 103, .	1.5	25
387	Electroluminescence Analysis and Simulation of the Effects of Injection and Temperature on Carrier Distribution in InGaN-Based Light-Emitting Diodes with Color-Coded Quantum Wells. Japanese Journal of Applied Physics, 2013, 52, 08JG09.	0.8	10
388	Electrical and Electroluminescence Characteristics of AlGaN/GaN High Electron Mobility Transistors Operated in Sustainable Breakdown Conditions. Japanese Journal of Applied Physics, 2013, 52, 08JN17.	0.8	13
389	Analysis of the deep level responsible for the degradation of InGaN-based laser diodes by DLTS. , 2012, , .		0
390	Time-dependent degradation of AlGaN/GaN high electron mobility transistors under reverse bias. Applied Physics Letters, 2012, 100, .	1.5	109
391	GaN HEMT Reliability: From Time Dependent Gate Degradation to On-state Failure Mechanisms. Materials Research Society Symposia Proceedings, 2012, 1432, 119.	0.1	2
392	Innovative methodology for testing the reliability of LED based systems. Proceedings of SPIE, 2012, , .	0.8	0
393	Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes. IEEE Journal of Quantum Electronics, 2012, 48, 1169-1176.	1.0	51
394	A novel degradation mechanism of AlGaN/GaN/Silicon heterostructures related to the generation of interface traps. , 2012, , .		3
395	Effect of shunt resistance on the performance of mc-Silicon solar cells: a combined electro-optical and thermal investigation. , 2012 , , .		18
396	Hot electrons and time-to-breakdown induced degradation in AlGaN/GaN HEMTs. , 2012, , .		4

#	Article	IF	CITATIONS
397	Time- and Field-Dependent Trapping in GaN-Based Enhancement-Mode Transistors With p-Gate. IEEE Electron Device Letters, 2012, 33, 375-377.	2.2	93
398	Reliability issues in GaN-based light-emitting diodes: Effect of dc and PWM stress. Microelectronics Reliability, 2012, 52, 1621-1626.	0.9	10
399	IV, noise and electroluminescence analysis of stress-induced percolation paths in AlGaN/GaN high electron mobility transistors. Microelectronics Reliability, 2012, 52, 2194-2199.	0.9	15
400	Phosphors for LED-based light sources: Thermal properties and reliability issues. Microelectronics Reliability, 2012, 52, 2164-2167.	0.9	58
401	Single- and double-heterostructure GaN-HEMTs devices for power switching applications. Microelectronics Reliability, 2012, 52, 2426-2430.	0.9	13
402	Indirect techniques for channel temperature estimation of HEMT microwave transistors: Comparison and limits. Microelectronics Reliability, 2012, 52, 2093-2097.	0.9	4
403	Degradation of AlGaN/GaN high electron mobility transistors related to hot electrons. Applied Physics Letters, 2012, 100, .	1.5	52
404	Impact of hot electrons on the reliability of AlGaN/GaN High Electron Mobility Transistors. , 2012, , .		11
405	Experimental and numerical correlation between current-collapse and fe-doping profiles in GaN HEMTs. , 2012 , , .		11
406	Chip and package-related degradation of high power white LEDs. Microelectronics Reliability, 2012, 52, 804-812.	0.9	50
407	Investigation of Efficiency-Droop Mechanisms in Multi-Quantum-Well InGaN/GaN Blue Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2012, 59, 1402-1409.	1.6	30
408	Analysis of Defect-Related Localized Emission Processes in InGaN/GaN-Based LEDs. IEEE Transactions on Electron Devices, 2012, 59, 1416-1422.	1.6	36
409	Electroluminescence analysis of time-dependent reverse-bias degradation of HEMTs: A complete model. , 2011, , .		14
410	(Invited) Electric-Field and Thermally-Activated Failure Mechanisms of AlGaN/GaN High Electron Mobility Transistors. ECS Transactions, 2011, 41, 237-249.	0.3	4
411	Recent results on the physical origin of the degradation of GaN-based LEDs and lasers. Proceedings of SPIE, $2011, \ldots$	0.8	2
412	Degradation mechanisms of high-power white LEDs activated by current and temperature. Microelectronics Reliability, 2011, 51, 1742-1746.	0.9	24
413	Degradation of InGaN lasers: Role of non-radiative recombination and injection efficiency. Microelectronics Reliability, 2011, 51, 1747-1751.	0.9	5
414	Investigation of Trapping and Hot-Electron Effects in GaN HEMTs by Means of a Combined Electrooptical Method. IEEE Transactions on Electron Devices, 2011, 58, 2996-3003.	1.6	200

#	Article	IF	Citations
415	Ageing mechanisms of 420 nm GaN HBLED. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2360-2362.	0.8	O
416	Investigation of the deep level involved in InGaN laser degradation by deep level transient spectroscopy. Applied Physics Letters, 2011, 99, .	1.5	56
417	Photostrictive effect in a polyvinylidene fluoride-trifluoroethylene copolymer. Applied Physics Letters, 2011, 99, 033506.	1.5	5
418	Electron and hole-related luminescence processes in gate injection transistors. Applied Physics Letters, 2010, 97, .	1.5	30
419	Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes. Applied Physics Letters, 2010, 97, .	1.5	40
420	Reliability issues of Gallium Nitride High Electron Mobility Transistors. International Journal of Microwave and Wireless Technologies, 2010, 2, 39-50.	1.5	94
421	A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs. IEEE Transactions on Electron Devices, 2010, 57, 108-118.	1.6	241
422	Impact of Trapped Charge and Interface Defects on the Degradation of the Optical and Electrical Characteristics in $\frac{NPD}{Aq}_{3}$ OLEDs. IEEE Transactions on Electron Devices, 2010, 57, 178-187.	1.6	11
423	Reliability evaluation for Blu-Ray laser diodes. Microelectronics Reliability, 2010, 50, 467-470.	0.9	8
424	Defect-related degradation of Deep-UV-LEDs. Microelectronics Reliability, 2010, 50, 1538-1542.	0.9	34
425	Degradation of InGaNâ€based laser diodes due to increased nonâ€radiative recombination rate. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 41-44.	0.8	5
426	Reliability of InGaNâ€based LEDs submitted to reverseâ€bias stress. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2208-2210.	0.8	2
427	A study on the reverse-bias and ESD instabilities of InGaN-based green LEDs. , 2010, , .		1
428	Soft and Hard Failures of InGaN-Based LEDs Submitted to Electrostatic Discharge Testing. IEEE Electron Device Letters, 2010, 31, 579-581.	2.2	26
429	Recent results on the degradation of white LEDs for lighting. Journal Physics D: Applied Physics, 2010, 43, 354007.	1.3	91
430	Extensive analysis of the luminescence properties of AlGaN/GaN high electron mobility transistors. Applied Physics Letters, 2010, 97, 063508.	1.5	42
431	A review on the reliability of GaN-based laser diodes. , 2010, , .		16
432	Degradation of InGaN-based laser diodes analyzed by means of electrical and optical measurements. Applied Physics Letters, 2010, 97, 263501.	1.5	41

#	Article	IF	CITATIONS
433	Light, bias, and temperature effects on organic TFTs. , 2010, , .		12
434	A study of the failure of GaN-based LEDs submitted to reverse-bias stress and ESD events. , 2010, , .		9
435	Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes. Applied Physics Letters, 2009, 95, .	1.5	49
436	Redistribution of multi-quantum well states induced by current stress in $\ln\langle i\rangle < \sinh\langle j\rangle < horizontal new part of the property of the property$	1.0	8
437	A new approach to correlate transport processes and optical efficiency in GaN-based LEDs. Journal Physics D: Applied Physics, 2009, 42, 045110.	1.3	1
438	Extensive analysis of the degradation of phosphor-converted LEDs. Proceedings of SPIE, 2009, , .	0.8	13
439	Analysis of the Role of Current, Temperature, and Optical Power in the Degradation of InGaN-Based Laser Diodes. IEEE Transactions on Electron Devices, 2009, 56, 222-228.	1.6	13
440	Reliability analysis of InGaN Blu-Ray laser diode. Microelectronics Reliability, 2009, 49, 1236-1239.	0.9	6
441	Analysis of the role of current in the degradation of InGaN-based laser diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S844-S847.	0.8	3
442	Organic TFT with SiO $$ inf $$ 2 $$ /inf $$ -parylene gate dielectric stack and optimized pentacene growth temperature. , 2009, , .		6
443	Analysis of diffusion involved in degradation of InGaN-based laser diodes. , 2009, , .		5
444	A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes. Journal of Applied Physics, 2009, 106, .	1.1	113
445	Degradation of InGaN-Based Laser Diodes Related to Nonradiative Recombination. IEEE Electron Device Letters, 2009, 30, 356-358.	2.2	18
446	Degradation of High-Brightness Green LEDs Submitted to Reverse Electrical Stress. IEEE Electron Device Letters, 2009, 30, 1051-1053.	2.2	34
447	Threshold voltage instability in organic TFT with SiO <inf>2</inf> and SiO <inf>2</inf> /parylene-stack dielectrics. Reliability Physics Symposium, 2009 IEEE International, 2009, , .	0.0	0
448	Thermally activated degradation and package instabilities of low flux LEDS., 2009,,.		13
449	Improved reliability of organic light-emitting diodes with indium-zinc-oxide anode contact. , 2009, , .		7
450	Localized Damage in AlGaN/GaN HEMTs Induced by Reverse-Bias Testing. IEEE Electron Device Letters, 2009, 30, 427-429.	2.2	79

#	Article	IF	Citations
451	High temperature instabilities of ohmic contacts on pâ€GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 435-440.	0.8	2
452	Thermal degradation of InGaN/GaN LEDs ohmic contacts. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2250-2253.	0.8	8
453	Extensive Analysis of the Degradation of Blu-Ray Laser Diodes. IEEE Electron Device Letters, 2008, 29, 578-581.	2.2	33
454	Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives. IEEE Transactions on Device and Materials Reliability, 2008, 8, 332-343.	1.5	535
455	A Review on the Reliability of GaN-Based LEDs. IEEE Transactions on Device and Materials Reliability, 2008, 8, 323-331.	1.5	237
456	Accelerated Life Test of High Brightness Light Emitting Diodes. IEEE Transactions on Device and Materials Reliability, 2008, 8, 304-311.	1.5	146
457	Electro-thermally activated degradation of blu-ray gan-based laser diodes. , 2008, , .		1
458	Reliability aspects of GaN-HEMTs on composite substrates. , 2008, , .		0
459	Role of non-radiative recombination in the degradation of InGaN-based laser diodes. , 2008, , .		1
460	Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias. IEEE Transactions on Device and Materials Reliability, 2008, 8, 312-322.	1.5	87
461	Combined optical and electrical analysis of AlGaN-based deep-UV LEDs reliability. , 2008, , .		7
462	Photocurrent spectroscopy evidence for stress-induced recombination centres in quantum wells of InGaN/GaN-based light-emitting diodes. Semiconductor Science and Technology, 2008, 23, 025004.	1.0	6
463	Implications of changes in the injection mechanisms on the low temperature electroluminescence in InGaNâ^•GaN light emitting diodes. Journal of Applied Physics, 2008, 103, 024503.	1.1	2
464	Reliability of Deep-UV Light-Emitting Diodes. IEEE Transactions on Device and Materials Reliability, 2008, 8, 248-254.	1.5	25
465	Field dependence of the carrier injection mechanisms in InGaN Quantum wells: Its effect on the luminescence properties of blue light emitting diodes. Journal of Applied Physics, 2008, 103, 093504.	1.1	12
466	A model for the thermal degradation of metal/(p-GaN) interface in GaN-based light emitting diodes. Journal of Applied Physics, 2008, 103, .	1.1	40
467	An Analysis of the Compositional Techniques in John Chowning's Stria. Computer Music Journal, 2007, 31, 26-37.	0.3	7
468	Thermal stability analysis of high brightness LED during high temperature and electrical aging. Proceedings of SPIE, 2007, , .	0.8	31

#	Article	IF	CITATIONS
469	Reversible Degradation of GaN LEDs Related to Passivation. , 2007, , .		2
470	A review of failure modes and mechanisms of GaN-based HEMTs., 2007,,.		31
471	Reversible Degradation of Ohmic Contacts on p-GaN for Application in High-Brightness LEDs. IEEE Transactions on Electron Devices, 2007, 54, 3245-3251.	1.6	52
472	High temperature electro-optical degradation of InGaN/GaN HBLEDs. Microelectronics Reliability, 2007, 47, 1625-1629.	0.9	73
473	High Brightness Ingan Leds Degradation at High Injection Current Bias. , 2006, , .		9
474	Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes. Journal of Applied Physics, 2006, 99, 053104.	1.1	84
475	High brightness GaN LEDs degradation during dc and pulsed stress. Microelectronics Reliability, 2006, 46, 1720-1724.	0.9	47
476	High-temperature failure of GaN LEDs related with passivation. Superlattices and Microstructures, 2006, 40, 405-411.	1.4	22
477	High-Temperature Degradation of GaN LEDs Related to Passivation. IEEE Transactions on Electron Devices, 2006, 53, 2981-2987.	1.6	80
478	Stability and performance evaluation of high-brightness light-emitting diodes under DC and pulsed bias conditions. Proceedings of SPIE, 2006, , .	0.8	20
479	Temperature and current dependence of the optical intensity and energy shift in blue InGaN-based light-emitting diodes: comparison between electroluminescence and cathodoluminescence. Semiconductor Science and Technology, 2006, 21, 638-642.	1.0	8
480	Temperature dependence of the electrical activity of localized defects in InGaN-based light emitting diodes. Applied Physics Letters, 2006, 89, 041917.	1.5	9
481	Short term instabilities of InGaN GaN light emitting diodes by capacitance-voltage characteristics and junction spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2862-2865.	0.8	5
482	Role of deep levels in DC current aging of GaN/InGaN Light-Emitting Diodes studied by Capacitance and Photocurrent Spectroscopy. Materials Research Society Symposia Proceedings, 2005, 892, 235.	0.1	1
483	Analysis of DC current accelerated life tests of GaN LEDs using a Weibull-based statistical model. IEEE Transactions on Device and Materials Reliability, 2005, 5, 688-693.	1.5	37
484	Study of short-term instabilities of InGaN/GaN light-emitting diodes by means of capacitance-voltage measurements and deep-level transient spectroscopy. , 2004, , .		0
485	Failure mechanisms of gallium nitride leds related with passivation. , 0, , .		9