Linda M Abriola

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8339818/linda-m-abriola-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85
papers

4,297
citations

4,558
ext. papers

4,558
ext. citations

36
h-index

65
g-index

5.29
L-index

#	Paper	IF	Citations
85	Quantifying Impacts of Microcosm Mass Loss on Kinetic Constant Estimation. <i>Environmental Science & Early: Technology</i> , 2021 , 55, 13822-13833	10.3	
84	Exploration of processes governing microbial reductive dechlorination in a heterogeneous aquifer flow cell. <i>Water Research</i> , 2021 , 193, 116842	12.5	1
83	Influence of aqueous film forming foams on the solubility and mobilization of non-aqueous phase liquid contaminants in quartz sands. <i>Water Research</i> , 2021 , 195, 116975	12.5	6
82	Effect of rhamnolipid biosurfactant on transport and retention of iron oxide nanoparticles in water-saturated quartz sand. <i>Environmental Science: Nano</i> , 2021 , 8, 311-327	7.1	4
81	Effects of rhamnolipid biosurfactant on the dissolution and transport of silver nanoparticles in porous media. <i>Environmental Science: Nano</i> , 2021 , 8, 2492-2506	7.1	O
80	Development and experimental evaluation of a mathematical model to predict polymer-enhanced nanoparticle mobility in heterogeneous formations. <i>Environmental Science: Nano</i> , 2021 , 8, 470-484	7.1	1
79	Comment on "Uptake of Poly- and Perfluoroalkyl Substances at the Air-Water Interface". <i>Environmental Science & Environmental Science & amp; Technology</i> , 2020 , 54, 7019-7020	10.3	12
78	Subsurface Source Zone Characterization and Uncertainty Quantification Using Discriminative Random Fields. <i>Water Resources Research</i> , 2020 , 56, e2019WR026481	5.4	6
77	Development and Validation of a Two-Stage Kinetic Sorption Model for Polymer and Surfactant Transport in Porous Media. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	7
76	Bioenhanced back diffusion and population dynamics of Dehalococcoides mccartyi strains in heterogeneous porous media. <i>Chemosphere</i> , 2020 , 254, 126842	8.4	6
75	Aqueous Film-Forming Foams Exhibit Greater Interfacial Activity than PFOA, PFOS, or FOSA. <i>Environmental Science & Environmental Science & Environment</i>	10.3	9
74	Accumulation of PFOA and PFOS at the Air Water Interface. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 487-491	11	54
73	Regressed Models for Multirate Mass Transfer in Heterogeneous Media. <i>Water Resources Research</i> , 2019 , 55, 8646-8665	5.4	O
72	Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones. <i>Journal of Contaminant Hydrology</i> , 2018 , 211, 1-14	3.9	11
71	Modeling reactive transport of polydisperse nanoparticles: assessment of the representative particle approach. <i>Environmental Science: Nano</i> , 2018 , 5, 2293-2303	7.1	2
70	Simulation of magnetite nanoparticle mobility in a heterogeneous flow cell. <i>Environmental Science:</i> Nano, 2017 , 4, 1512-1524	7.1	5
69	Aqueous Aggregation Behavior of Engineered Superparamagnetic Iron Oxide Nanoparticles: Effects of Oxidative Surface Aging. <i>Environmental Science & Environmental Science & En</i>	10.3	15

(2012-2016)

68	Influence of a polymer sunscreen additive on the transport and retention of titanium dioxide nanoparticles in water-saturated porous media. <i>Environmental Science: Nano</i> , 2016 , 3, 157-168	7.1	12	
67	Improved Mobility of Magnetite Nanoparticles at High Salinity with Polymers and Surfactants. <i>Energy & Energy &</i>	4.1	16	
66	The effects of substrate exposure history and carbon starvation-induced stress on the EPS synthesis of TCE degrading toluene oxidizing soil bacteria. <i>Environmental Earth Sciences</i> , 2016 , 75, 1	2.9	3	
65	A multi-constituent site blocking model for nanoparticle and stabilizing agent transport in porous media. <i>Environmental Science: Nano</i> , 2015 , 2, 155-166	7.1	31	
64	In situ measurement and simulation of nano-magnetite mobility in porous media subject to transient salinity. <i>Nanoscale</i> , 2015 , 7, 1047-57	7.7	11	
63	Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach. <i>Journal of Contaminant Hydrology</i> , 2015 , 172, 48-60	3.9	18	
62	Markov random field models for quantifying uncertainty in subsurface remediation 2015,		1	
61	Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones. <i>Journal of Contaminant Hydrology</i> , 2015 , 183, 1-15	3.9	1	
60	On the upscaling of mass transfer rate expressions for interpretation of source zone partitioning tracer tests. <i>Water Resources Research</i> , 2015 , 51, 832-847	5.4	4	
59	Influence of residual polymer on nanoparticle deposition in porous media. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	28	
58	Effect of surface coating composition on quantum dot mobility in porous media. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	21	
57	Influence of dissolved oxygen on silver nanoparticle mobility and dissolution in water-saturated quartz sand. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	22	
56	A geometric approach to joint inversion with applications to contaminant source zone characterization. <i>Inverse Problems</i> , 2013 , 29, 115014	2.3	17	
55	Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis. <i>Journal of Contaminant Hydrology</i> , 2013 , 151, 117-30	3.9	13	
54	Environmental Remediation and Restoration: Hydrological and Geophysical Processing Methods. <i>IEEE Signal Processing Magazine</i> , 2012 , 29, 16-26	9.4	3	
53	Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. <i>Environmental Science & Environmental Science & Environment</i>	10.3	54	
52	Quantification of experimental subsurface fluid saturations from high-resolution source zone images. <i>Water Resources Research</i> , 2012 , 48,	5.4	3	
51	Manifold regression for subsurface contaminant characterization 2012 ,		1	

50	Kinetic limitations on tracer partitioning in ganglia dominated source zones. <i>Journal of Contaminant Hydrology</i> , 2011 , 126, 195-207	3.9	4
49	Influence of wettability variations on dynamic effects in capillary pressure. <i>Water Resources Research</i> , 2010 , 46,	5.4	35
48	Predicting DNAPL mass discharge from pool-dominated source zones. <i>Journal of Contaminant Hydrology</i> , 2010 , 114, 18-34	3.9	57
47	Effectiveness of nanoscale zero-valent iron for treatment of a PCE-DNAPL source zone. <i>Journal of Contaminant Hydrology</i> , 2010 , 118, 128-42	3.9	40
46	The influence of dimensionality on simulations of mass recovery from nonuniform dense non-aqueous phase liquid (DNAPL) source zones. <i>Advances in Water Resources</i> , 2009 , 32, 401-412	4.7	19
45	A multistage multicriteria spatial sampling strategy for estimating contaminant mass discharge and its uncertainty. <i>Water Resources Research</i> , 2009 , 45,	5.4	11
44	Investigation of the transport and deposition of fullerene (C60) nanoparticles in quartz sands under varying flow conditions. <i>Environmental Science & Environmental Science &</i>	10.3	199
43	Transport and retention of nanoscale C60 aggregates in water-saturated porous media. <i>Environmental Science & Environmental Sc</i>	10.3	171
42	Experimental evaluation and mathematical modeling of microbially enhanced tetrachloroethene (PCE) dissolution. <i>Environmental Science & Environmental </i>	10.3	76
41	Experimental and numerical validation of the total trapping number for prediction of DNAPL mobilization. <i>Environmental Science & Environmental Environmen</i>	10.3	17
40	A geostatistical approach for quantification of contaminant mass discharge uncertainty using multilevel sampler measurements. <i>Water Resources Research</i> , 2007 , 43,	5.4	23
39	Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. <i>Advances in Water Resources</i> , 2007 , 30, 1547-1561	4.7	31
38	Simulation of solute transport in a heterogeneous vadose zone describing the hydraulic properties using a multistep stochastic approach. <i>Water Resources Research</i> , 2006 , 42,	5.4	16
37	Modeling dense nonaqueous phase liquid mass removal in nonuniform formations: Linking source-zone architecture and system response 2006 , 2, 74		35
36	Estimating mass discharge from dense nonaqueous phase liquid source zones using upscaled mass transfer coefficients: An evaluation using multiphase numerical simulations. <i>Water Resources Research</i> , 2006 , 42,	5.4	82
35	Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 2. System operation and evaluation. <i>Environmental Science & Environmental Scien</i>	10.3	63
34	Pilot-scale demonstration of surfactant-enhanced PCE solubilization at the Bachman Road site. 1. Site characterization and test design. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	72
33	Compositional Effects on Interfacial Properties in Contaminated Systems: Implications for Organic Liquid Migration and Recovery. <i>ACS Symposium Series</i> , 2005 , 160-182	0.4	1

(2000-2005)

32	Comparison of two-dimensional and three-dimensional simulations of dense nonaqueous phase liquids (DNAPLs): Migration and entrapment in a nonuniform permeability field. <i>Water Resources Research</i> , 2005 , 41,	5.4	40
31	Exploring dynamic effects in capillary pressure in multistep outflow experiments. <i>Water Resources Research</i> , 2005 , 41,	5.4	58
30	Prediction of two-phase capillary pressure-saturation relationships in fractional wettability systems. <i>Journal of Contaminant Hydrology</i> , 2005 , 77, 247-70	3.9	43
29	Coupling aggressive mass removal with microbial reductive dechlorination for remediation of DNAPL source zones: a review and assessment. <i>Environmental Health Perspectives</i> , 2005 , 113, 465-77	8.4	86
28	Infiltration of PCE in a system containing spatial wettability variations. <i>Journal of Contaminant Hydrology</i> , 2004 , 73, 39-63	3.9	54
27	Influence of textural and wettability variations on predictions of DNAPL persistence and plume development in saturated porous media. <i>Advances in Water Resources</i> , 2004 , 27, 411-427	4.7	43
26	Stimulated microbial reductive dechlorination following surfactant treatment at the Bachman Road site. <i>Environmental Science & Environmental </i>	10.3	56
25	Dense nonaqueous phase liquid (DNAPL) source zone characterization: Influence of hydraulic property correlation on predictions of DNAPL infiltration and entrapment. <i>Water Resources Research</i> , 2004 , 40,	5.4	44
24	Influence of hydraulic property correlation on predicted dense nonaqueous phase liquid source zone architecture, mass recovery and contaminant flux. <i>Water Resources Research</i> , 2004 , 40,	5.4	69
23	Influence of surfactant-facilitated interfacial tension reduction on chlorinated solvent migration in porous media: observations and numerical simulation. <i>Journal of Contaminant Hydrology</i> , 2003 , 64, 227-	- 52 9	27
22	Entrapment and dissolution of DNAPLs in heterogeneous porous media. <i>Journal of Contaminant Hydrology</i> , 2003 , 67, 133-57	3.9	34
21	Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses. 1. Experimental studies. <i>Journal of Contaminant Hydrology</i> , 2001 , 48, 325-50	3.9	90
20	Surfactant enhanced recovery of tetrachloroethylene from a porous medium containing low permeability lenses. 2. Numerical simulation. <i>Journal of Contaminant Hydrology</i> , 2001 , 48, 351-74	3.9	37
19	A Nondimensional Evaluation of Tracer Sensitivity to Density Effects. <i>Ground Water</i> , 2000 , 38, 226-233	2.4	7
18	A numerical model (MISER) for the simulation of coupled physical, chemical and biological processes in soil vapor extraction and bioventing systems. <i>Journal of Contaminant Hydrology</i> , 2000 , 43, 239-270	3.9	63
17	The influence of field-scale heterogeneity on the surfactant-enhanced remediation of entrapped nonaqueous phase liquids. <i>Journal of Contaminant Hydrology</i> , 2000 , 42, 219-251	3.9	47
16	The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formations. <i>Journal of Contaminant Hydrology</i> , 2000 , 42, 187-218	3.9	67
15	Influence of Soil Texture on Rate-Limited Micellar Solubilization. <i>Journal of Environmental Engineering, ASCE</i> , 2000 , 126, 39-46	2	10

14	The influence of capillarity in numerical modeling of organic liquid redistribution in two-phase systems. <i>Advances in Water Resources</i> , 1998 , 21, 159-170	4.7	34
13	Flow and entrapment of dense nonaqueous phase liquids in physically and chemically heterogeneous aquifer formations. <i>Advances in Water Resources</i> , 1998 , 22, 117-132	4.7	37
12	Solubilization of Dodecane, Tetrachloroethylene, and 1,2-Dichlorobenzene in Micellar Solutions of Ethoxylated Nonionic Surfactants. <i>Environmental Science & Environmental Science & Ethoxylated Nonionic Surfactants</i> .	10.3	103
11	Influence of Viscous and Buoyancy Forces on the Mobilization of Residual Tetrachloroethylene during Surfactant Flushing. <i>Environmental Science & Environmental Science & Envi</i>	10.3	257
10	Simulation of organic liquid flow in porous media using estimated and measured transport properties. <i>Journal of Contaminant Hydrology</i> , 1996 , 22, 223-239	3.9	22
9	An Experimental Investigation of Rate-Limited Nonaqueous Phase Liquid Volatilization in Unsaturated Porous Media: Steady State Mass Transfer. <i>Water Resources Research</i> , 1995 , 31, 2159-2172	5.4	93
8	Mass conservative numerical solutions of the head-based Richards equation. <i>Water Resources Research</i> , 1994 , 30, 2579-2586	5.4	124
7	Surfactant enhanced remediation of soil columns contaminated by residual tetrachloroethylene. <i>Journal of Contaminant Hydrology</i> , 1994 , 16, 35-53	3.9	200
6	An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates. <i>Water Resources Research</i> , 1994 , 30, 321-332	5.4	265
5	Simulation of surfactant-enhanced aquifer remediation. Water Resources Research, 1994, 30, 2959-2977	5.4	92
4	Surfactant-enhanced solubilization of residual dodecane in soil columns. 1. Experimental investigation. <i>Environmental Science & Environmental Science</i>	10.3	313
3	Surfactant-enhanced solubilization of residual dodecane in soil columns. 2. Mathematical modeling. <i>Environmental Science & Environmental Science & En</i>	10.3	119
2	An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Steady state mass transfer rates. <i>Water Resources Research</i> , 1992 , 28, 2691-2705	5.4	335
1	Modeling Multiphase Migration of Organic Chemicals in Groundwater Systems. A Review and Assessment. <i>Environmental Health Perspectives</i> , 1989 , 83, 117	8.4	64