Debdas Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8339395/publications.pdf

Version: 2024-02-01

713332 687220 43 506 13 21 citations h-index g-index papers 47 47 47 136 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analytical fuzzy space geometry II. Fuzzy Sets and Systems, 2023, 459, 144-181.	1.6	1
2	Augmented Lagrangian cone method for multiobjective optimization problems with an application to an optimal control problem. Optimization and Engineering, 2023, 24, 1633-1665.	1.3	2
3	Generalized-Hukuhara-Gradient Efficient-Direction Method to Solve Optimization Problems with Interval-Valued Functions and Its Application in Least-Squares Problems. International Journal of Fuzzy Systems, 2022, 24, 1275-1300.	2.3	7
4	Generalized-Hukuhara subgradient and its application in optimization problem with interval-valued functions. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, 1.	0.8	10
5	Interval-valued value function and its application in interval optimization problems. Computational and Applied Mathematics, 2022, 41, 1.	1.0	5
6	Weak sharp minima for interval-valued functions and its primal-dual characterizations using generalized Hukuhara subdifferentiability. Soft Computing, 2022, 26, 10253-10273.	2.1	6
7	Analytical fuzzy space geometry I. Fuzzy Sets and Systems, 2021, 421, 77-110.	1.6	3
8	Characterizations and Generating Efficient Solutions to Interval Optimization Problems. Springer Proceedings in Mathematics and Statistics, 2021, , 167-185.	0.1	0
9	An erratum to "Extended Karush-Kuhn-Tucker Condition for Constrained Interval Optimization Problems and its Application in Support Vector Machines― Information Sciences, 2021, 559, 309-313.	4.0	2
10	\$\$overline{ext {pin}}\$\$-TSVM: A Robust Transductive Support Vector Machine and its Application to the Detection of COVID-19 Infected Patients. Neural Processing Letters, 2021, 53, 3981-4010.	2.0	3
11	Generalized Hukuhara-Clarke Derivative of Interval-valued Functions and its Properties. Soft Computing, 2021, 25, 14629-14643.	2.1	7
12	Generalized Hukuhara $G\tilde{A}^{\ddagger}$ teaux and $Fr\tilde{A}^{\textcircled{O}}$ chet derivatives of interval-valued functions and their application in optimization with interval-valued functions. Information Sciences, 2020, 510, 317-340.	4.0	40
13	A survey of robust optimization based machine learning with special reference to support vector machines. International Journal of Machine Learning and Cybernetics, 2020, 11, 1359-1385.	2.3	13
14	Globalized robust Markov perfect equilibrium for discounted stochastic games and its application on intrusion detection in wireless sensor networks: Part lâ€"theory. Japan Journal of Industrial and Applied Mathematics, 2020, 37, 283-308.	0.5	5
15	Improved Sparsity of Support Vector Machine with Robustness Towards Label Noise Based on Rescaled \$\$alpha \$\$-Hinge Loss with Non-smooth Regularizer. Neural Processing Letters, 2020, 52, 2211-2239.	2.0	1
16	A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. International Journal of Approximate Reasoning, 2020, 121, 187-205.	1.9	29
17	Controller and Observer design for Chaotic Systems: A Vector Based Contraction Approach. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3282-3286.	2.2	2
18	Robust twin support vector regression based on rescaled Hinge loss. Pattern Recognition, 2020, 105, 107395.	5.1	24

#	Article	IF	CITATIONS
19	Extended Karush-Kuhn-Tucker condition for constrained interval optimization problems and its application in support vector machines. Information Sciences, 2019, 504, 276-292.	4.0	46
20	Fuzzy Triangle and Fuzzy Trigonometry. Studies in Fuzziness and Soft Computing, 2019, , 93-114.	0.6	0
21	Fuzzy Line. Studies in Fuzziness and Soft Computing, 2019, , 53-91.	0.6	0
22	Fuzzy Pareto Optimality. Studies in Fuzziness and Soft Computing, 2019, , 173-202.	0.6	0
23	On identifying fuzzy knees in fuzzy multi-criteria optimization problems. SeMA Journal, 2019, 76, 343-364.	1.0	1
24	A saddle point characterization of efficient solutions for interval optimization problems. Journal of Applied Mathematics and Computing, 2018, 58, 193-217.	1.2	24
25	A quasi-Newton method with rank-two update to solve fuzzy optimization problems. SeMA Journal, 2018, 75, 285-303.	1.0	0
26	Cubic Interpolation: A Line Search Technique for Fuzzy Optimization Problems. International Journal of Applied and Computational Mathematics, 2018, 4, 1.	0.9	0
27	A Study on Fuzzy Triangle and Fuzzy Trigonometric Properties. Springer Proceedings in Mathematics and Statistics, 2018, , 341-359.	0.1	2
28	Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions. Journal of Applied Mathematics and Computing, 2017, 53, 709-731.	1.2	48
29	Quadratic Interpolation Technique to Minimize Univariable Fuzzy Functions. International Journal of Applied and Computational Mathematics, 2017, 3, 527-547.	0.9	6
30	A Davidon-Fletcher-Powell Type Quasi-Newton Method to Solve Fuzzy Optimization Problems. Communications in Computer and Information Science, 2017, , 232-245.	0.4	0
31	A Quasi-Newton Method with Rank-Two Update to Solve Interval Optimization Problems. International Journal of Applied and Computational Mathematics, 2017, 3, 1719-1738.	0.9	20
32	Analytical fuzzy plane geometry III. Fuzzy Sets and Systems, 2016, 283, 83-107.	1.6	25
33	A Newton method for capturing efficient solutions of interval optimization problems. Opsearch, 2016, 53, 648-665.	1.1	20
34	On general form of fuzzy lines and its application in fuzzy line fitting. Journal of Intelligent and Fuzzy Systems, 2015, 29, 659-671.	0.8	11
35	A method for capturing the entire fuzzy non-dominated set of a fuzzy multi-criteria optimization problem. Fuzzy Sets and Systems, 2015, 272, 1-29.	1.6	15
36	A direction based classical method to obtain complete Pareto set of multi-criteria optimization problems. Opsearch, 2015, 52, 340-366.	1.1	7

#	Article	IF	CITATIONS
37	On Fuzzy Ideal Cone Method to Capture Entire Fuzzy Nondominated Set of Fuzzy Multi-criteria Optimization Problems with Fuzzy Parameters. Springer Proceedings in Mathematics and Statistics, 2015, , 249-260.	0.1	0
38	A new method to obtain fuzzy Pareto set of fuzzy multi-criteria optimization problems. Journal of Intelligent and Fuzzy Systems, 2014, 26, 1223-1234.	0.8	10
39	Analytical fuzzy plane geometry II. Fuzzy Sets and Systems, 2014, 243, 84-109.	1.6	32
40	A new Pareto set generating method for multi-criteria optimization problems. Operations Research Letters, 2014, 42, 514-521.	0.5	18
41	Ideal Cone: A New Method to Generate Complete Pareto Set of Multi-criteria Optimization Problems. Springer Proceedings in Mathematics and Statistics, 2014, , 171-190.	0.1	4
42	Fuzzy ideal cone: A method to obtain complete fuzzy non-dominated set of fuzzy multi-criteria optimization problems with fuzzy parameters. , 2013, , .		6
43	Analytical fuzzy plane geometry I. Fuzzy Sets and Systems, 2012, 209, 66-83.	1.6	45