
Jean-Marc Tulliani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8339266/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	A Review of Selfâ€Healing Concrete for Damage Management of Structures. Advanced Materials Interfaces, 2018, 5, 1800074.	1.9	412
2	Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Composites Science and Technology, 2009, 69, 1985-1990.	3.8	380
3	Experimental characterization of the self-healing capacity of cement based materials and its effects on the material performance: A state of the art report by COST Action SARCOS WG2. Construction and Building Materials, 2018, 167, 115-142.	3.2	183
4	Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts. Construction and Building Materials, 2015, 85, 208-216.	3.2	109
5	Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sensors and Actuators B: Chemical, 2011, 152, 144-154.	4.0	98
6	Carbon-Based Materials for Humidity Sensing: A Short Review. Micromachines, 2019, 10, 232.	1.4	98
7	High performance self-consolidating cementitious composites by using micro carbonized bamboo particles. Materials & Design, 2015, 76, 223-229.	5.1	88
8	Geopolymer technology for application-oriented dense and lightened materials. Elaboration and characterization. Ceramics International, 2015, 41, 12967-12979.	2.3	85
9	Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Frontiers of Structural and Civil Engineering, 2016, 10, 209-213.	1.2	79
10	A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics. Ceramics International, 2019, 45, 9653-9673.	2.3	61
11	Addressing the need for standardization of test methods for self-healing concrete: an inter-laboratory study on concrete with macrocapsules. Science and Technology of Advanced Materials, 2020, 21, 661-682.	2.8	50
12	Development and mechanical characterization of novel ceramic foams fabricated by gel-casting. Journal of the European Ceramic Society, 2013, 33, 1567-1576.	2.8	49
13	In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalization. Toxicology in Vitro, 2015, 30, 476-485.	1.1	49
14	Waste Coffee Ground Biochar: A Material for Humidity Sensors. Sensors, 2019, 19, 801.	2.1	49
15	Semiclosedâ€Cell Mullite Foams: Preparation and Macro―and Micromechanical Characterization. Journal of the American Ceramic Society, 1999, 82, 961-968.	1.9	47
16	Sulfate attack of concrete building foundations induced by sewage waters. Cement and Concrete Research, 2002, 32, 843-849.	4.6	47
17	Type of materials, pyrolysis conditions, carbon content and size dimensions: The parameters that influence the mechanical properties of biochar cement-based composites. Theoretical and Applied Fracture Mechanics, 2019, 103, 102261.	2.1	45
18	Elaboration and characterization of novel humidity sensor based on micro-carbonized bamboo particles. Sensors and Actuators B: Chemical, 2017, 239, 1251-1256.	4.0	44

#	Article	IF	CITATIONS
19	Influence of the dopants on the electrical resistance of hematite-based humidity sensors. Ceramics International, 2005, 31, 507-514.	2.3	42
20	Preparation and mechanical characterization of dense and porous zirconia produced by gel casting with gelatin as a gelling agent. Ceramics International, 2009, 35, 2481-2491.	2.3	39
21	Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems. Materials, 2015, 8, 1897-1923.	1.3	39
22	Experimental analysis of self-healing cement-based materials incorporating extruded cementitious hollow tubes. Journal of Intelligent Material Systems and Structures, 2016, 27, 2633-2652.	1.4	39
23	Alkali-activation of marble sludge: Influence of curing conditions and waste glass addition. Journal of the European Ceramic Society, 2020, 40, 3776-3787.	2.8	38
24	Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials. Materials, 2016, 9, 466.	1.3	37
25	New cementitious composite building material with enhanced toughness. Theoretical and Applied Fracture Mechanics, 2015, 76, 67-74.	2.1	36
26	Iron-oxide nanoparticles supported on sepiolite as a novel humidity sensor. Journal of the European Ceramic Society, 2007, 27, 1983-1989.	2.8	35
27	Gelcasting of dense and porous ceramics by using a natural gelatine. Journal of Porous Materials, 2009, 16, 393-400.	1.3	34
28	Experimental Investigation on Use of Wheat Straw Ash and Bentonite in Self-Compacting Cementitious System. Advances in Materials Science and Engineering, 2014, 2014, 1-11.	1.0	33
29	Sealing efficiency of cement-based materials containing extruded cementitious capsules. Construction and Building Materials, 2020, 251, 119039.	3.2	31
30	Mechanical properties of cellular ceramics obtained by gel casting: Characterization and modeling. Journal of the European Ceramic Society, 2009, 29, 2979-2989.	2.8	30
31	Behaviour of Pre-Cracked Self-Healing Cementitious Materials under Static and Cyclic Loading. Materials, 2020, 13, 1149.	1.3	29
32	Preparation and Characterization of Polypropylene/Carbon Nanotubes (PP/CNTs) Nanocomposites as Potential Strain Gauges for Structural Health Monitoring. Nanomaterials, 2020, 10, 814.	1.9	29
33	Evaluation of Methodologies for Assessing Self-Healing Performance of Concrete with Mineral Expansive Agents: An Interlaboratory Study. Materials, 2021, 14, 2024.	1.3	29
34	Valorisation of alumino-silicate stone muds: From wastes to source materials for innovative alkali-activated materials. Cement and Concrete Composites, 2017, 83, 251-262.	4.6	28
35	Environmental Technology, Materials Science, Architectural Design, and Real Estate Market Evaluation: A Multidisciplinary Approach for Energy-Efficient Buildings. Journal of Urban Technology, 2013, 20, 57-80.	2.5	25
36	Biological response to purification and acid functionalization of carbon nanotubes. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	24

#	Article	IF	CITATIONS
37	Novel calcium phosphate/PCL graded samples: Design and development in view of biomedical applications. Materials Science and Engineering C, 2019, 97, 336-346.	3.8	24
38	Materials development for CO-detection with improved selectivity through catalytic activation. Sensors and Actuators B: Chemical, 2006, 118, 121-128.	4.0	23
39	Improvements in self-consolidating cementitious composites by using micro carbonized aggregates. Frattura Ed Integrita Strutturale, 2014, 8, 75-83.	0.5	23
40	New self-healing techniques for cement-based materials. Procedia Structural Integrity, 2017, 3, 253-260.	0.3	23
41	Biochars as Innovative Humidity Sensing Materials. Chemosensors, 2017, 5, 35.	1.8	23
42	Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications. Sensors, 2022, 22, 4669.	2.1	23
43	Organic-inorganic material for the consolidation of plaster. Journal of Cultural Heritage, 2011, 12, 364-371.	1.5	22
44	Carbonaceous admixtures in cementitious building materials: Effect of particle size blending on rheology, packing, early age properties and processing energy demand. Science of the Total Environment, 2022, 807, 150884.	3.9	22
45	Electrical characterization of room temperature humidity sensors in La0.8Sr0.2Fe1â^Cu O3 (x= 0, 0.05,) Tj ETQq1	1 0.7843 2.3	314.rgBT /0∨ 21
46	Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multiwalled Carbon Nanotubes in Keeping the Plain Concrete Properties. Journal of Nanotechnology, 2016, 2016, 1-9.	1.5	21
47	Strontium-Doped Hematite as a Possible Humidity Sensing Material for Soil Water Content Determination. Sensors, 2013, 13, 12070-12092.	2.1	20
48	Elaboration and characterization of modified sepiolites and their humidity sensing features for environmental monitoring. Applied Clay Science, 2015, 115, 165-173.	2.6	20
49	3D printing of dense and porous alkali-activated refractory wastes via Direct Ink Writing (DIW). Journal of the European Ceramic Society, 2021, 41, 3798-3808.	2.8	20
50	Thermal annealing of carbon nanotubes reveals a toxicological impact of the structural defects. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	19
51	Recycled Mortars with C&D Waste. Procedia Structural Integrity, 2016, 2, 2896-2904.	0.3	18
52	Robocasting of Single and Multi-Functional Calcium Phosphate Scaffolds and Its Hybridization with Conventional Techniques: Design, Fabrication and Characterization. Applied Sciences (Switzerland), 2020, 10, 8677.	1.3	18
53	UVâ€Printable and Flexible Humidity Sensors Based on Conducting/Insulating Semiâ€Interpenetrated Polymer Networks. Macromolecular Materials and Engineering, 2017, 302, 1700161.	1.7	17
54	Dilatometry as a tool to study a new synthesis for calcium hexaluminate. Journal of Thermal Analysis and Calorimetry, 2003, 72, 1135-1140.	2.0	16

#	Article	IF	CITATIONS
55	Role of Natural Stone Wastes and Minerals in the Alkali Activation Process: A Review. Materials, 2020, 13, 2284.	1.3	16
56	Alkali-activated refractory wastes exposed to high temperatures: development and characterization. Journal of the European Ceramic Society, 2020, 40, 3314-3326.	2.8	16
57	Synthesis of ZnO Nanoparticles onto Sepiolite Needles and Determination of Their Sensitivity toward Humidity, NO2 and H2. Journal of Materials Science and Technology, 2016, 32, 573-582.	5.6	15
58	A study of the main factors affecting the performance of self-sensing concrete. Advances in Cement Research, 2017, 29, 216-226.	0.7	15
59	Gelcasting and sintering of hydroxyapatite materials: Effect of particle size and Ca/P ratio on microstructural, mechanical and biological properties. Journal of the European Ceramic Society, 2021, 41, 7301-7310.	2.8	14
60	Nanostructured Metal Oxide Semiconductors towards Greenhouse Gas Detection. Chemosensors, 2022, 10, 57.	1.8	14
61	New NOx sensors based on hematite doped with alkaline and alkaline-earth elements. Journal of the European Ceramic Society, 2011, 31, 2357-2364.	2.8	13
62	Sensing characteristics of hematite and barium oxide doped hematite films towards ozone and nitrogen dioxide. Procedia Engineering, 2011, 25, 219-222.	1.2	12
63	Diagnostic application of nonlinear ultrasonics to characterize degradation by expansive salts in masonry systems. NDT and E International, 2013, 55, 57-63.	1.7	12
64	Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory. Materials, 2016, 9, 786.	1.3	11
65	Robocasting of dense zirconia parts using commercial yttria-stabilized zirconia granules and ultrafine particles. Paste preparation, printing, mechanical properties. Ceramics International, 2022, 48, 1936-1946.	2.3	11
66	The reinforcement of ancient timber-joints with carbon nano-composites. Meccanica, 2013, 48, 1925-1935.	1.2	10
67	Epoxy monomers consolidant for lime plaster cured via a redox activated cationic polymerization. Journal of Cultural Heritage, 2014, 15, 595-601.	1.5	10
68	Barium hexaferrite thick-films for ozone detection at low temperature. Solid State Ionics, 2018, 320, 24-32.	1.3	10
69	Ammonia selective sensors based on cobalt spinel prepared by combustion synthesis. Solid State lonics, 2019, 337, 91-100.	1.3	10
70	Semiconducting Metal Oxides Nanocomposites for Enhanced Detection of Explosive Vapors. Ceramics, 2018, 1, 98-119.	1.0	9
71	Rice husk ash as a new humidity sensing material and its aging behavior. Sensors and Actuators B: Chemical, 2021, 328, 129049.	4.0	9
72	Durability of self-healing cementitious systems with encapsulated polyurethane evaluated with a new pre-standard test method. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	9

#	Article	IF	CITATIONS
73	A visible and long-wavelength photocured epoxy coating for stone protection. Journal of Cultural Heritage, 2014, 15, 250-257.	1.5	8
74	An Acrylic Latex Filled with Zinc Oxide by Miniemulsion Polymerization as a Protective Coating for Stones. Macromolecular Materials and Engineering, 2014, 299, 1352-1361.	1.7	8
75	A Novel Life Prediction Model Based on Monitoring Electrical Properties of Self-Sensing Cement-Based Materials. Applied Sciences (Switzerland), 2021, 11, 5080.	1.3	8
76	Crack path and fracture surface modifications in cement composites. Frattura Ed Integrita Strutturale, 2016, , .	0.5	8
77	Mortar Made of Recycled Sand from C&D. Procedia Engineering, 2015, 109, 240-247.	1.2	7
78	W-doped indium oxide synthetized via hydrothermal route for low-temperature ozone sensing. Solid State lonics, 2020, 347, 115271.	1.3	7
79	Damage Management of Concrete Structures with Engineered Cementitious Materials and Natural Fibers: A Review of Potential Uses. Sustainability, 2022, 14, 3917.	1.6	7
80	Dense and Cellular Zirconia Produced by Gel Casting with Agar: Preparation and High Temperature Characterization. Journal of Nanomaterials, 2013, 2013, 1-11.	1.5	6
81	Diagnosis of the surface layer damage in a 1960s reinforced concrete building. Case Studies in Construction Materials, 2014, 1, 77-82.	0.8	6
82	New ZnO-Based Glass Ceramic Sensor for H2 and NO2 Detection. Sensors, 2017, 17, 2538.	2.1	6
83	An investigation of the beneficial effects of adding carbon nanotubes to standard injection grout. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 119-128.	1.7	6
84	Fabrication of dense and porous biphasic calcium phosphates: Effect of dispersion on sinterability and microstructural development. International Journal of Applied Ceramic Technology, 2019, 16, 1797-1806.	1.1	6
85	Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers. Materiales De Construccion, 2018, 68, 172.	0.2	6
86	Experimental Evaluation of Tensile Performance of Aluminate Cement Composite Reinforced with Weft Knitted Fabrics as a Function of Curing Temperature. Polymers, 2021, 13, 4385.	2.0	6
87	The role of water vapour on the oxidation of two Ln–Si–Al–O–N glasses (Ln=Y, La). Journal of Non-Crystalline Solids, 2002, 306, 99-109.	1.5	5
88	The plasters of the Sacro Monte of Varallo Sesia. From the characterisation to the proposition of a restorative mix. Case Studies in Construction Materials, 2014, 1, 46-52.	0.8	5
89	ZnO thick films for NO2 detection: effect of different nanostructures on the sensors' performances. Journal of Materials Science: Materials in Electronics, 2019, 30, 20958-20969.	1.1	5
90	Sol–gel-entrapped pH indicator for monitoring pH variations in cementitious materials. Journal of Applied Biomaterials and Functional Materials, 2020, 18, 228080002093654.	0.7	5

#	Article	IF	CITATIONS
91	Study of the degradation causes affecting stucco sculptures from the Valentino Castle in Turin. Materials and Structures/Materiaux Et Constructions, 2005, 38, 425-432.	1.3	5
92	Microstructural study of aged ferrite powders for sensing layers. Ceramics International, 2013, 39, 4923-4927.	2.3	4
93	A Shell Model for Free Vibration Analysis of Carbon Nanoscroll. Materials, 2017, 10, 387.	1.3	4
94	Synthesis and Characterization of Nano-Tungsten Oxide Precipitated onto Natural Inorganic Clay for Humidity-Sensing Applications. Ceramics, 2018, 1, 120-127.	1.0	4
95	Modified fracture properties of cement composites with nano/micro carbonized bagasse fibers. Frattura Ed Integrita Strutturale, 2016, , .	0.5	4
96	Development of a porous layer catalytically activated for improving gas sensors performances. Ceramics International, 2007, 33, 1199-1203.	2.3	3
97	Ba-Doped Iron Oxide as a New Material for NO2 Detection. Materials, 2013, 6, 4801-4816.	1.3	3
98	Development of a fast humidity sensor based on quartz tuning fork. , 2016, , .		3
99	WO3-Doped Indium Oxide Thick Films for Ozone Detection at Low Temperature. Proceedings (mdpi), 2017, 1, 428.	0.2	3
100	Role of a sodium glassy binder on microstructure and electrical conductivity of beta-alumina-based gas sensors. Ceramics International, 2004, 30, 525-532.	2.3	2
101	Conventional and SPS Sintering of a Nanocrystalline Alumina: A Comparative Study. Advances in Science and Technology, 2006, 45, 957-962.	0.2	2
102	Investigation of the Film Thickness Influence on the Sensor Response of In2O3-Based Sensors for O3 Detection at Low Temperature and Operando DRIFT Study. Proceedings (mdpi), 2019, 14, .	0.2	2
103	Performance Evaluation of MWCNTs Reinforced Cement Mortar Composites using Natural and Commercial Surfactants. Journal Wuhan University of Technology, Materials Science Edition, 2022, 37, 47-57.	0.4	2
104	Design of Screen–Printed Porous Layers for Improving Gas Sensor Performances. Ceramic Engineering and Science Proceedings, 0, , 227-234.	0.1	1
105	Selected papers presented at the †International Workshop on Cellular Materials' (I.Wo.C.Mat.) in Turin (Italy) in 2011: Editorial comments. Journal of the European Ceramic Society, 2013, 33, 1485-1486.	2.8	0
106	Response of Nano-Reinforced Cementitious Composites Using Natural and Commercial Dispersants. Proceedings (mdpi), 2019, 34, 23.	0.2	0
107	Porous Alumina and Zirconia Bodies Obtained by a Novel Gel Casting Process. Ceramic Engineering and Science Proceedings, 0, , 327-338.	0.1	0