Gary L Glish

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8338766/gary-l-glish-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

149
papers7,416
citations43
h-index83
g-index159
ext. papers7,824
ext. citations5.7
avg, IF5.57
L-index

#	Paper	IF	Citations
149	Spatially resolved quantification of drug metabolism and efficacy in 3D paper-based tumor mimics. <i>Analytica Chimica Acta</i> , 2021 , 1186, 339091	6.6	1
148	Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cellular Membrane Potential Are Predictors of E-Liquid Induced Cellular Toxicity. <i>Nicotine and Tobacco Research</i> , 2020 , 22, S4-S13	4.9	3
147	Flavored e-liquids increase cytoplasmic Ca levels in airway epithelia. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2020 , 318, L226-L241	5.8	15
146	Alkali Metal Cationization of Tumor-associated Antigen Peptides for Improved Dissociation and Measurement by Differential Ion Mobility-Mass Spectrometry. <i>Journal of Proteome Research</i> , 2020 , 19, 3176-3183	5.6	
145	Cigarillos Compromise the Mucosal Barrier and Protein Expression in Airway Epithelia. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2020 , 63, 767-779	5.7	3
144	Resolution and Assignment of Differential Ion Mobility Spectra of Sarcosine and Isomers. <i>Journal of the American Society for Mass Spectrometry</i> , 2018 , 29, 752-760	3.5	15
143	Fragmentation in the ion transfer optics after differential ion mobility spectrometry produces multiple artifact monomer peaks. <i>International Journal of Mass Spectrometry</i> , 2018 , 425, 47-54	1.9	7
142	Distinguishing Linkage Position and Anomeric Configuration of Glucose-Glucose Disaccharides by Water Adduction to Lithiated Molecules. <i>Analytical Chemistry</i> , 2018 , 90, 2048-2054	7.8	11
141	Use of an Open Port Sampling Interface Coupled to Electrospray Ionization for the On-Line Analysis of Organic Aerosol Particles. <i>Journal of the American Society for Mass Spectrometry</i> , 2018 , 29, 297-303	3.5	9
140	Dual Emitter Nano-Electrospray Ionization Coupled to Differential Ion Mobility Spectrometry-Mass Spectrometry for Shotgun Lipidomics. <i>Analytical Chemistry</i> , 2018 , 90, 9117-9124	7.8	9
139	Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. <i>PLoS Biology</i> , 2018 , 16, e2003904	9.7	79
138	Paper Spray Mass Spectrometry for High-Throughput Quantification of Nicotine and Cotinine. <i>Analytical Methods</i> , 2018 , 10, 46-50	3.2	13
137	Computational modeling and confirmation of leukemia-associated minor histocompatibility antigens. <i>Blood Advances</i> , 2018 , 2, 2052-2062	7.8	13
136	Identifying the D-Pentoses Using Water Adduction to Lithium Cationized Molecule. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1420-1424	3.5	12
135	Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2017 , 313, L52-L66	5.8	60
134	Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. <i>American Journal of Physiology - Lung Cellular and Molecular Physiology</i> , 2017 , 313, L278-L292	5.8	126
133	A coaxial extractive electrospray ionization source. <i>Analytical Methods</i> , 2017 , 9, 4997-5002	3.2	4

132	Little Cigars are More Toxic than Cigarettes and Uniquely Change the Airway Gene and Protein Expression. <i>Scientific Reports</i> , 2017 , 7, 46239	4.9	17
131	Distinguishing Biologically Relevant Hexoses by Water Adduction to the Lithium-Cationized Molecule. <i>Analytical Chemistry</i> , 2017 , 89, 10504-10510	7.8	15
130	Variables Affecting the Internal Energy of Peptide Ions During Separation by Differential Ion Mobility Spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 2160-2169	3.5	4
129	Increased Ion Transmission for Differential Ion Mobility Combined with Mass Spectrometry by Implementation of a Flared Inlet Capillary. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 119-124	3.5	7
128	Metal Cationization Extractive Electrospray Ionization Mass Spectrometry of Compounds Containing Multiple Oxygens. <i>Journal of the American Society for Mass Spectrometry</i> , 2017 , 28, 1030-10	3 3 ·5	13
127	Improved Differential Ion Mobility Separations Using Linked Scans of Carrier Gas Composition and Compensation Field. <i>Journal of the American Society for Mass Spectrometry</i> , 2015 , 26, 1746-53	3.5	7
126	Probing Mobility-Selected Saccharide Isomers: Selective Ion-Molecule Reactions and Wavelength-Specific IR Activation. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 6057-64	2.8	72
125	Direct analysis of herbicides by paper spray ionization mass spectrometry. <i>Analytical Methods</i> , 2015 , 7, 9808-9816	3.2	31
124	Miniature Flow-Through Low-Temperature Plasma Ionization Source for Ambient Ionization of Gases and Aerosols. <i>Analytical Chemistry</i> , 2015 , 87, 11887-92	7.8	14
123	Peptide/MHC tetramer-based sorting of CD8+ T cells to a leukemia antigen yields clonotypes drawn nonspecifically from an underlying restricted repertoire. <i>Cancer Immunology Research</i> , 2015 , 3, 228-35	12.5	11
122	Resolving powers of >7900 using linked scans: how well does resolving power describe the separation capability of differential ion mobility spectrometry. <i>Analyst, The,</i> 2015 , 140, 6871-8	5	7
121	Low-temperature plasma ionization-mass spectrometry for the analysis of compounds in organic aerosol particles. <i>Analytical Chemistry</i> , 2015 , 87, 2249-54	7.8	13
120	Optimization of peptide separations by differential ion mobility spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2014 , 25, 1592-9	3.5	24
119	Differential ion mobility spectrometry coupled to tandem mass spectrometry enables targeted leukemia antigen detection. <i>Journal of Proteome Research</i> , 2014 , 13, 4356-62	5.6	10
118	Cation recombination energy/coulomb repulsion effects in ETD/ECD as revealed by variation of charge per residue at fixed total charge. <i>Journal of the American Society for Mass Spectrometry</i> , 2013 , 24, 1676-89	3.5	4
117	A novel HLA-A*0201 restricted peptide derived from cathepsin G is an effective immunotherapeutic target in acute myeloid leukemia. <i>Clinical Cancer Research</i> , 2013 , 19, 247-57	12.9	19
116	Quantification of human uridine-diphosphate glucuronosyl transferase 1A isoforms in liver, intestine, and kidney using nanobore liquid chromatography-tandem mass spectrometry. <i>Analytical Chemistry</i> , 2012 , 84, 98-105	7.8	146
115	Triple Quadrupole and Quadrupole Ion Trap Mass Spectrometers 2012 , 1		

114	Tandem mass spectrometric methods for the analysis of iTRAQ labeled peptides in a quadrupole ion trap. <i>International Journal of Mass Spectrometry</i> , 2011 , 308, 260-264	1.9	1
113	A new approach to IRMPD using selective ion dissociation in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 2011 , 22, 207-13	3.5	4
112	The effect of ion trap temperature on the dissociation of peptide ions in a quadrupole ion trap. <i>International Journal of Mass Spectrometry</i> , 2011 , 301, 74-83	1.9	10
111	Identification of Leukemia Associated Antigens From ANKRD17 and CDK4 Using Mass Spectrometry Based Screening,. <i>Blood</i> , 2011 , 118, 4020-4020	2.2	1
110	A Novel HLA-A2 Restricted Peptide Derived From Cathepsin G Is An Effective Immunotherapeutic Target for Myeloid Leukemia. <i>Blood</i> , 2011 , 118, 2986-2986	2.2	
109	Formation of cold ion-neutral clusters using superfluid helium nanodroplets. <i>Review of Scientific Instruments</i> , 2010 , 81, 054101	1.7	8
108	Collisional Cooling in the Quadrupole Ion Trap Mass Spectrometer (QITMS) 2010 , 739-767		1
107	Pulsed Nano-Electrospray Ionization: Characterization of Temporal Response and Implementation with a Flared Inlet Capillary. <i>Instrumentation Science and Technology</i> , 2009 , 37, 257-273	1.4	26
106	On the time scale of internal energy relaxation of AP-MALDI and nano-ESI ions in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 1801-12	3.5	11
105	Improving IRMPD in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 2009 , 20, 1127-31	3.5	20
104	Simultaneous collision induced dissociation of the charge reduced parent ion during electron capture dissociation. <i>Analytical Chemistry</i> , 2009 , 81, 6156-64	7.8	6
103	Iterative accumulation multiplexing Fourier transform ion cyclotron resonance mass spectrometry. <i>Analytical Chemistry</i> , 2009 , 81, 5623-8	7.8	4
102	Mapping the distribution of ion positions as a function of quadrupole ion trap mass spectrometer operating parameters to optimize infrared multiphoton dissociation. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 3447-54	2.8	16
101	Hybrid mass spectrometers for tandem mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 2008 , 19, 161-72	3.5	69
100	Why are a(3) ions rarely observed?. Journal of the American Society for Mass Spectrometry, 2008, 19, 176	43.750	35
99	Collisional cooling in a quadrupole ion trap at sub-ambient temperatures. <i>International Journal of Mass Spectrometry</i> , 2007 , 265, 176-181	1.9	15
98	Thermally assisted collision-induced dissociation in a quadrupole ion trap mass spectrometer. <i>Analytical Chemistry</i> , 2006 , 78, 4609-14	7.8	22
97	Ion/molecule reactions to chemically deconvolute the electrospray ionization mass spectra of synthetic polymers. <i>Analytical Chemistry</i> , 2006 , 78, 8472-6	7.8	19

(2001-2006)

96	High amplitude short time excitation: a method to form and detect low mass product ions in a quadrupole ion trap mass spectrometer. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 81-4	3.5	63
95	Determination of cooling rates in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 2006 , 17, 932-938	3.5	45
94	Continuous real-time analysis of products from the reaction of some monoterpenes with ozone using atmospheric sampling glow discharge ionization coupled to a quadrupole ion trap mass spectrometer. <i>Analytical Chemistry</i> , 2005 , 77, 3156-63	7.8	16
93	3,8,11,16-Tetrakis(aminomethyl)-1,2,9,10-tetrathia-cyclohexadecane tetra-trifluoroacetic acid: synthetic precursor to a novel thio-substituted diamine. <i>Tetrahedron</i> , 2005 , 61, 1749-1754	2.4	4
92	Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. <i>Methods in Enzymology</i> , 2005 , 402, 109-48	1.7	28
91	The use of static pressures of heavy gases within a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 2003 , 14, 1099-109	3.5	36
90	Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads. <i>Journal of the American Society for Mass Spectrometry</i> , 2003 , 14, 1076-85	3.5	32
89	Matrix-assisted laser desorption/ionizationBoundary-activated dissociation of peptide ions in a quadrupole ion trap. <i>International Journal of Mass Spectrometry</i> , 2003 , 222, 75-83	1.9	2
88	The basics of mass spectrometry in the twenty-first century. <i>Nature Reviews Drug Discovery</i> , 2003 , 2, 140-50	64.1	232
87	Electrospray-atmospheric sampling glow discharge ionization source for the direct analysis of liquid samples. <i>Analytical Chemistry</i> , 2003 , 75, 1620-7	7.8	7
86	Collision-induced signal enhancement (CISE): the use of boundary activation to effect non-resonant CISE. <i>Journal of the American Society for Mass Spectrometry</i> , 2002 , 13, 650-8	3.5	2
85	Pseudo-MS3 in a MALDI orthogonal quadrupole-time of flight mass spectrometer. <i>Journal of the American Society for Mass Spectrometry</i> , 2002 , 13, 1034-41	3.5	26
84	Hydrogen abstraction and decomposition of bromopicrin and other trihalogenated disinfection byproducts by GC/MS. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	39
83	Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beads. <i>Analytical Chemistry</i> , 2002 , 74, 3429-33	7.8	114
82	Gas-phase ion/ion interactions between peptides or proteins and iron ions in a quadrupole ion trap. <i>International Journal of Mass Spectrometry</i> , 2001 , 204, 47-54	1.9	43
81	Charge permutation reactions in beam type mass spectrometers. <i>International Journal of Mass Spectrometry</i> , 2001 , 212, 219-227	1.9	18
80	Dissociation pathways of alkali-cationized peptides: opportunities for C-terminal peptide sequencing. <i>Journal of the American Society for Mass Spectrometry</i> , 2001 , 12, 497-504	3.5	57
79	Evidence for ionization-related conformational differences of peptide ions in a quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 2001, 12, 1331-8	3.5	6

78	Thermally assisted infrared multiphoton photodissociation in a quadrupole ion trap. <i>Analytical Chemistry</i> , 2001 , 73, 3542-8	7.8	77
77	A new approach for effecting surface-induced dissociation in an ion cyclotron resonance mass spectrometer: a modeling study. <i>Journal of the American Society for Mass Spectrometry</i> , 2000 , 11, 1107-	1 3 75	6
76	C-terminal peptide sequencing using acetylated peptides with MSn in a quadrupole ion trap. <i>Analyst, The</i> , 2000 , 125, 635-40	5	20
<i>75</i>	Intra- and intermolecular isotope effects for hydrogen loss from protonated aniline and the barrier to hydrogen transfer between the ring and substituent. <i>International Journal of Mass Spectrometry</i> , 1999 , 190-191, 295-302	1.9	6
74	Determination of the dissociation kinetics of a transient intermediate. <i>Journal of the American Society for Mass Spectrometry</i> , 1999 , 10, 119-25	3.5	7
73	⊞Heterotelechelic Poly(Ŀaprolactone)s via Ring-Opening/Chain-Transfer Polymerization and Their Utility as Precursors to AB and ABC Block Copolymers□ <i>Macromolecules</i> , 1999 , 32, 5149-5153	5.5	5
72	New method to study the effects of peptide sequence on the dissociation energetics of peptide ions. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 175-7	3.5	8
71	Origin of product ions in the MS/MS spectra of peptides in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1998 , 9, 341-4	3.5	64
70	Collision-induced signal enhancement: a method to increase product ion intensities in MS/MS and MSn experiments. <i>Analytical Chemistry</i> , 1998 , 70, 1831-7	7.8	12
69	Boundary-activated dissociation of peptide ions in a quadrupole ion trap. <i>Analytical Chemistry</i> , 1998 , 70, 340-6	7.8	24
68	Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. <i>Langmuir</i> , 1998 , 14, 17-30	4	1636
67	C-terminal peptide sequencing via multistage mass spectrometry. <i>Analytical Chemistry</i> , 1998 , 70, 5162-5	57.8	92
66	A MALDI probe for mass spectrometers. <i>Analytical Chemistry</i> , 1997 , 69, 2525-9	7.8	12
65	Novel Peptide Dissociation: Gas-Phase Intramolecular Rearrangement of Internal Amino Acid Residues. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5481-5488	16.4	111
64	Parent ion resolution in linked scans for dissociations occurring in the first field-free region of sector mass spectrometers. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 545-553	3.5	1
63	Prediction of artifact peak intensity in linked scans for dissociations occurring in the first field-free region of sector mass spectrometers. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 554-560	3.5	1
62	Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1997 , 8, 987-995	3.5	156
61	Strategy for pulsed ionization methods on a sector mass spectrometer. <i>Analytical Chemistry</i> , 1996 , 68, 845-9	7.8	6

60	Secondary Interactions Affecting the Dissociation Patterns of Arginine-Containing Peptide Ions. Journal of the American Chemical Society, 1996 , 118, 6252-6256	16.4	61
59	Correlation of kinetic energy losses in high-energy collision-induced dissociation with observed peptide product ions. <i>Analytical Chemistry</i> , 1996 , 68, 522-6	7.8	23
58	Reactions of the phenylium cation with small oxygen- and nitrogen-containing molecules. <i>Journal of the American Society for Mass Spectrometry</i> , 1996 , 7, 473-81	3.5	25
57	Reaction from isomeric parent ions in the dissociation of dimethylpyrroles. <i>Journal of the American Society for Mass Spectrometry</i> , 1996 , 7, 930-7	3.5	4
56	Effects of heavy gases on the tandem mass spectra of peptide ions in the quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 1996 , 7, 1194-202	3.5	37
55	Ion production by positron-molecule resonances. <i>Physical Review A</i> , 1994 , 49, 2389-2393	2.6	13
54	Competition between resonance ejection and ion dissociation during resonant excitation in a quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1994 , 5, 1031-41	3.5	61
53	Multiple stage mass spectrometry: the next generation tandem mass spectrometry experiment. <i>Analyst, The</i> , 1994 , 119, 533	5	13
52	Ion trap mass spectrometry of externally generated ions. <i>Analytical Chemistry</i> , 1994 , 66, 689A-696A	7.8	85
51	Ion trap mass spectrometry. Using high-pressure ionization. <i>Analytical Chemistry</i> , 1994 , 66, 737A-743A	7.8	59
50	Matrix-assisted laser desorption of biological molecules in the quadrupole ion trap mass spectrometer. <i>Analytical Chemistry</i> , 1993 , 65, 14-20	7.8	48
49	Role of gas dynamics in negative ion formation in an atmospheric sampling glow discharge ionization source. <i>Analytical Chemistry</i> , 1993 , 65, 778-783	7.8	11
48	Positron-induced dissociation of organic molecules. <i>Physical Review A</i> , 1993 , 47, 1023-1030	2.6	18
47	Theory of high-resolution mass spectrometry achieved via resonance ejection in the quadrupole ion trap. <i>Analytical Chemistry</i> , 1992 , 64, 1434-1439	7.8	112
46	Radio-frequency glow discharge ion trap mass spectrometry. <i>Analytical Chemistry</i> , 1992 , 64, 1606-1609	7.8	49
45	Electrochemical origin of radical cations observed in electrospray ionization mass spectra. <i>Analytical Chemistry</i> , 1992 , 64, 1586-1593	7.8	259
44	Collisional activation with random noise in ion trap mass spectrometry. <i>Analytical Chemistry</i> , 1992 , 64, 1455-60	7.8	51
43	Tandem mass spectrometry of small, multiply charged oligonucleotides. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 60-70	3.5	456

42	Reaction of analyte ions with neutral chemical ionization gas. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 549-57	3.5	6
41	Unimolecular and collision-induced reactions of doubly charged porphyrins. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 235-42	3.5	13
40	Evidence of isomerization during ion isolation in the quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1992 , 3, 680-2	3.5	8
39	To the editor: J Am Soc Mass Spectrom 1991, 2, 349. <i>Journal of the American Society for Mass Spectrometry</i> , 1991 , 2, 349	3.5	7
38	Selective ion isolation/rejection over a broad mass range in the quadrupole ion trap. <i>Journal of the American Society for Mass Spectrometry</i> , 1991 , 2, 11-21	3.5	92
37	Protonated water and protonated methanol cluster decompositions in a quadrupole ion trap. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1991 , 109, 171-186		25
36	Applications of mass spectrometry to DNA sequencing. <i>Genetic Analysis, Techniques and Applications</i> , 1991 , 8, 223-9		14
35	Comparison of electron ionization and chemical ionization sensitivities in an ion trap mass spectrometer. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1991 , 106, 137-157		16
34	Multiple stages of mass spectrometry in a quadrupole ion trap mass spectrometer: prerequisites. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1991 , 106, 213-235		68
33	Fixed-wavelength laser ionization/tandem mass spectrometry for mixture analysis in the quadrupole ion trap. <i>Analytical Chemistry</i> , 1991 , 63, 1186-1192	7.8	9
32	Preforming ions in solution via charge-transfer complexation for analysis by electrospray ionization mass spectrometry. <i>Analytical Chemistry</i> , 1991 , 63, 2064-2068	7.8	63
31	Ion spray liquid chromatography/ion trap mass spectrometry determination of biomolecules. <i>Analytical Chemistry</i> , 1991 , 63, 375-383	7.8	86
30	Charge determination of product ions formed from collision-induced dissociation of multiply protonated molecules via ion/molecule reactions. <i>Analytical Chemistry</i> , 1991 , 63, 1971-8	7.8	95
29	Electrospray ionization of porphyrins using a quadrupole ion trap for mass analysis. <i>Analytical Chemistry</i> , 1991 , 63, 1098-1109	7.8	144
28	Ion isolation and sequential stages of mass spectrometry in a quadrupole ion trap mass spectrometer. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1990 , 96, 117-137		129
27	Structures of NO3Iformed via glow discharge in atmospheric gases. <i>Journal of the American Society for Mass Spectrometry</i> , 1990 , 1, 217-224	3.5	8
26	Determination of daughter ion formulas by multiple stages of mass spectrometry. <i>Journal of the American Society for Mass Spectrometry</i> , 1990 , 1, 166-73	3.5	13
25	Positron ionization mass spectrometry. I: instrumentation. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1990 , 97, 227-236		8

24	Positron ionization mass spectrometry. II: ionization by fast positrons. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1990 , 97, 237-252		10
23	Negative ion chemical ionization in a quadrupole ion trap using reagent anions injected from an external ion source. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1990 , 99, 151-167		19
22	Reactions of dimethylamine with multiply charged ions of cytochrome c. <i>Journal of the American Chemical Society</i> , 1990 , 112, 5668-5670	16.4	161
21	Porphyrin pyrrole sequencing: low-energy collision-induced dissociation of (M + 7H)+ generated in-situ during ammonia chemical ionization. <i>Analytical Chemistry</i> , 1990 , 62, 786-793	7.8	15
20	Electrospray ionization combined with ion trap mass spectrometry. <i>Analytical Chemistry</i> , 1990 , 62, 1284	- 1 2895	215
19	Simultaneous monitoring for parent ions of targeted daughter ions: a method for rapid screening using mass spectrometry/mass spectrometry. <i>Analytical Chemistry</i> , 1990 , 62, 56-61	7.8	11
18	High-pressure ammonia chemical ionization mass spectrometry and mass spectrometry/mass spectrometry for porphyrin structure determination. <i>Energy & Energy & Energy</i> , 4, 720-729	4.1	7
17	Analyzer scan modes for hybrid mass spectrometers. <i>Organic Mass Spectrometry</i> , 1989 , 24, 470-478		4
16	Coupling of an atmospheric-samling ion source with an ion-trap mass spectrometer. <i>Analytica Chimica Acta</i> , 1989 , 225, 25-35	6.6	87
15	Laser desorption mass spectrometry and MS/MS with a three-dimensional quadrupole ion trap. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1989 , 94, 15-24		33
14	Mechanism of porphyrin reduction and decomposition in a high-pressure chemical ionization plasma. <i>Journal of the American Chemical Society</i> , 1989 , 111, 6027-6035	16.4	23
13	Atmospheric sampling glow discharge ionization source for the determination of trace organic compounds in ambient air. <i>Analytical Chemistry</i> , 1988 , 60, 2220-2227	7.8	155
12	Self chemical ionization in an ion trap mass spectrometer. <i>Analytical Chemistry</i> , 1988 , 60, 2312-2314	7.8	61
11	Collision-activated dissociation of negative ions in an ion trap mass spectrometer. <i>Analytical Chemistry</i> , 1987 , 59, 1670-1674	7.8	57
10	The effect of charge on hydroxyl loss from ortho-substituted nitrobenzene ions. <i>Organic Mass Spectrometry</i> , 1987 , 22, 224-228		24
9	Dished peaks from collision-induced dissociations of nitroaromatic anions. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1987 , 76, 41-46		7
8	Design and performance of a hybrid mass spectrometer of QEB geometry. <i>International Journal of Mass Spectrometry and Ion Processes</i> , 1986 , 70, 321-338		17
7	Hybrid Instruments for Mass Spectrometry/Mass Spectrometry. <i>Instrumentation Science and Technology</i> , 1986 , 15, 1-36	1.4	16

6	High-resolution detection of daughter ions with a hybrid mass spectrometer. <i>Analytical Chemistry</i> , 1986 , 58, 1887-1889	7.8	6
5	Alkyldihydroxyacetonephosphate synthase mechanism: 18O studies of fatty acid release from acyldihydroxyacetone phosphate. <i>Biochemistry</i> , 1985 , 24, 8012-6	3.2	18
4	The Analysis of Explosives by Tandem Mass Spectrometry. <i>Journal of Forensic Sciences</i> , 1985 , 30, 11010.	J1.8	20
3	A tandem quadrupole/time-of-flight instrument for mass spectrometry/mass spectrometry. Analytical Chemistry, 1984 , 56, 2291-2295	7.8	41
2	Thermal ionization of quaternary ammonium salts. <i>International Journal of Mass Spectrometry and Ion Physics</i> , 1983 , 50, 143-149		9
1	Differential helium retention in zircons: Implications for nuclear waste containment. <i>Geophysical Research Letters</i> , 1982 , 9, 1129-1130	4.9	