Gunther Schauberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8338746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of Models Used for UV Index Calculations. Photochemistry and Photobiology, 1998, 67, 657-662.	2.5	122
2	Change of Ultraviolet Absorbance of Sunscreens by Exposure to Solar-Simulated Radiation. Journal of Investigative Dermatology, 2001, 117, 256-262.	0.7	98
3	Evaluation of the chemical composition and correlation between the calculated and measured odour concentration of odorous gases from a landfill in Beijing, China. Atmospheric Environment, 2017, 164, 337-347.	4.1	93
4	Conversion of the chemical concentration of odorous mixtures into odour concentration and odour intensity: A comparison of methods. Atmospheric Environment, 2016, 127, 283-292.	4.1	64
5	Steady-state balance model to calculate the indoor climate of livestock buildings, demonstrated for finishing pigs. International Journal of Biometeorology, 2000, 43, 154-162.	3.0	55
6	Comparison of measured and modelled uv indices for the assessment of health risks. Meteorological Applications, 2001, 8, 267-277.	2.1	53
7	Diurnal and annual variation of the sensation distance of odour emitted by livestock buildings calculated by the Austrian odour dispersion model (AODM). Atmospheric Environment, 2000, 34, 4839-4851.	4.1	52
8	MODEL FOR THE GLOBAL IRRADIANCE OF THE SOLAR BIOLOGICALLY-EFFECTIVE ULTRAVIOLET-RADIATION ON INCLINED SURFACES. Photochemistry and Photobiology, 1990, 52, 1029-1032.	2.5	47
9	Summary and Overview of the Odour Regulations Worldwide. Atmosphere, 2021, 12, 206.	2.3	44
10	Facial Solar UV Exposure of Austrian Farmers During Occupation. Photochemistry and Photobiology, 2010, 86, 1404-1413.	2.5	43
11	A sensitivity study of separation distances calculated with the Austrian Odour Dispersion Model (AODM). Atmospheric Environment, 2007, 41, 1725-1735.	4.1	39
12	Modelled performance of energy saving air treatment devices to mitigate heat stress for confined livestock buildings in Central Europe. Biosystems Engineering, 2017, 164, 85-97.	4.3	39
13	Odour emissions from a waste treatment plant using an inverse dispersion technique. Atmospheric Environment, 2011, 45, 1639-1647.	4.1	38
14	Physical Characteristics of Six New Thermocyclers. Clinical Chemistry, 2003, 49, 960-963.	3.2	37
15	Concept to assess the human perception of odour by estimating short-time peak concentrations from one-hour mean values. Reply to a comment by Janicke etÂal Atmospheric Environment, 2012, 54, 624-628.	4.1	37
16	Separation distance to avoid odour nuisance due to livestock calculated by the Austrian odour dispersion model (AODM). Agriculture, Ecosystems and Environment, 2001, 87, 13-28.	5.3	36
17	Comparison of a Gaussian diffusion model with guidelines for calculating the separation distance between livestock farming and residential areas to avoid odour annoyance. Atmospheric Environment, 1999, 33, 2219-2228.	4.1	34
18	Comparability of separation distances between odour sources and residential areas determined by various national odour impact criteria. Atmospheric Environment, 2014, 95, 20-28.	4.1	33

#	Article	IF	CITATIONS
19	A monitoring network for erythemally-effective solar ultraviolet radiation in Austria: determination of the measuring sites and visualisation of the spatial distribution. Theoretical and Applied Climatology, 2001, 69, 221-229.	2.8	32
20	Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor. Atmospheric Environment, 2013, 66, 84-90.	4.1	32
21	Factors influencing separation distances against odour annoyance calculated by Gaussian and Lagrangian dispersion models. Atmospheric Environment, 2016, 140, 69-83.	4.1	32
22	Impact of global warming on the odour and ammonia emissions of livestock buildings usedÂforÂfattening pigs. Biosystems Engineering, 2018, 175, 106-114.	4.3	31
23	Diurnal and Annual Variation of Odour Emission from Animal Houses: a Model Calculation for Fattening Pigs. Biosystems Engineering, 1999, 74, 251-259.	0.4	29
24	Ultraviolet protective performance of photoprotective lipsticks: change of spectral transmittance because of ultraviolet exposure. Photodermatology Photoimmunology and Photomedicine, 2005, 21, 84-92.	1.5	28
25	Characterization and quantification of the influence of season and gender on plasma chemistries of Hermann's tortoises (Testudo hermanni, Gmelin 1789). Research in Veterinary Science, 2013, 95, 59-68.	1.9	28
26	Anisotropic model for the diffuse biologically-effective irradiance of solar UV-radiation on inclined surfaces. Theoretical and Applied Climatology, 1992, 46, 45-51.	2.8	27
27	A comparison of separation distances against odour annoyance calculated with two models. Atmospheric Environment, 2015, 116, 22-35.	4.1	27
28	IT—Information Techonology and the Human Interface. Biosystems Engineering, 2002, 82, 25-37.	4.3	26
29	Cabin air temperature of parked vehicles in summer conditions: life-threatening environment for children and pets calculated by a dynamic model. Theoretical and Applied Climatology, 2017, 130, 107-118.	2.8	26
30	Impacts of global warming on confined livestock systems for growing-fattening pigs: simulation of heat stress for 1981 to 2017 in Central Europe. International Journal of Biometeorology, 2019, 63, 221-230.	3.0	26
31	Assessing the inter-annual variability of separation distances around odour sources to protect the residents from odour annoyance. Journal of Environmental Sciences, 2019, 79, 11-24.	6.1	26
32	Novel Approach for Assessing Performance of PCR Cyclers Used for Diagnostic Testing. Journal of Clinical Microbiology, 2005, 43, 2724-2728.	3.9	25
33	Global warming impact on confined livestock in buildings: efficacy of adaptation measures to reduce heat stress for growing-fattening pigs. Climatic Change, 2019, 156, 567-587.	3.6	25
34	Empirical model derived from dispersion calculations to determine separation distances between livestock buildings and residential areas to avoid odour nuisance. Atmospheric Environment, 2012, 46, 508-515.	4.1	22
35	Global Forecast Model to Predict the Daily Dose of the Solar Erythemally Effective UV Radiation¶. Photochemistry and Photobiology, 2005, 81, 154.	2.5	22
36	Validation of the Austrian forecast model for solar, biologically effective UV radiation-UV index for Vienna. Journal of Geophysical Research, 2000, 105, 26661-26667.	3.3	20

#	Article	IF	CITATIONS
37	Use of a Monte Carlo technique to complete a fragmented set of H2S emission rates from a wastewater treatment plant. Journal of Hazardous Materials, 2013, 263, 694-701.	12.4	20
38	Global validation of a forecast model for irradiance of solar, erythemally effective ultraviolet radiation. Optical Engineering, 2002, 41, 3040.	1.0	18
39	Odour emission scenarios for fattening pigs as input for dispersion models: A step from an annual mean value to time series. Agriculture, Ecosystems and Environment, 2014, 193, 108-116.	5.3	18
40	The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems. Sustainability, 2020, 12, 9442.	3.2	18
41	Odour episodes in the vicinity of livestock buildings: A qualitative comparison of odour complaint statistics with model calculations. Agriculture, Ecosystems and Environment, 2006, 114, 185-194.	5.3	17
42	Efficacy of adaptation measures to alleviate heat stress in confined livestock buildings in temperate climate zones. Biosystems Engineering, 2020, 200, 157-175.	4.3	17
43	Odour impact assessment by considering short-term ambient concentrations: A multi-model and two-site comparison. Environment International, 2020, 144, 105990.	10.0	16
44	Plasma Exogenous Creatinine Excretion for the Assessment of Renal Function in Avian Medicine—Pharmacokinetic Modeling in Racing Pigeons (Columba livia). Journal of Avian Medicine and Surgery, 2013, 27, 173-179.	0.5	15
45	A new empirical model to calculate separation distances between livestock buildings and residential areas applied to the Austrian guideline to avoid odour nuisance. Atmospheric Environment, 2012, 47, 341-347.	4.1	14
46	Do odour impact criteria of different jurisdictions ensure analogous separation distances for an equivalent level of protection?. Journal of Environmental Management, 2019, 240, 394-403.	7.8	14
47	Temporal and spatial variability of total ozone content over Central Europe: analysis in respect to the biological effect on plants. Agricultural and Forest Meteorology, 2003, 120, 9-26.	4.8	12
48	Determination of ammonia and hydrogen sulfide emissions from a commercial dairy farm with an exercise yard and the health-related impact for residents. Environmental Science and Pollution Research, 2020, 27, 37684-37698.	5.3	11
49	Performance evaluation of approaches to predict sub-hourly peak odour concentrations. Atmospheric Environment: X, 2020, 7, 100076.	1.4	11
50	Assessment of thickness of photoprotective lipsticks and frequency of reapplication: results from a laboratory test and a field experiment. British Journal of Dermatology, 2003, 148, 763-769.	1.5	10
51	Preprocessing of total ozone content as an input parameter to UV Index forecast calculations. Journal of Geophysical Research, 2003, 108, .	3.3	9
52	A Comparative Analysis of Methods for Determining Odour-Related Separation Distances around a Dairy Farm in Beijing, China. Atmosphere, 2019, 10, 231.	2.3	9
53	Sensitivity of UV Erythemally Effective Irradiance and Daily Dose to Spatial Variability in Total Ozone. Photochemistry and Photobiology, 2008, 84, 1149-1163.	2.5	8
54	Evaluation of the goodness of fit of solar simulated radiation to a reference solar spectrum for photobiological experiments. Medical Physics, 2004, 31, 2509-2519.	3.0	7

#	Article	IF	CITATIONS
55	Sensitivity of Erythemally Effective UV Irradiance and Daily Exposure to Temporal Variability in Total Ozone. Photochemistry and Photobiology, 2009, 85, 261-271.	2.5	7
56	Sensitivity of Erythemally Effective UV Irradiance and Daily Exposure to Uncertainties in Measured Total Ozone. Photochemistry and Photobiology, 2007, 83, 433-444.	2.5	6
57	Comparison of two peak-to-mean approaches for use in odour dispersion models. Water Science and Technology, 2012, 66, 1498-1501.	2.5	6
58	The Austrian UVAâ€Network. Photochemistry and Photobiology, 2019, 95, 1258-1266.	2.5	6
59	Climate change impact on the dispersion of airborne emissions and the resulting separation distances to avoid odour annoyance. Atmospheric Environment: X, 2019, 2, 100021.	1.4	6
60	Economic Risk Assessment by Weather-Related Heat Stress Indices for Confined Livestock Buildings: A Case Study for Fattening Pigs in Central Europe. Agriculture (Switzerland), 2021, 11, 122.	3.1	6
61	Site-dependent decrease of odour-related peak-to-mean factors with distance. Advances in Science and Research, 2014, 11, 69-73.	1.0	5
62	Temporal variability in odour emissions: To what extent this matters for the assessment of annoyance using dispersion modelling. Atmospheric Environment: X, 2020, 5, 100054.	1.4	5
63	Determination of Dose–Response Relationship to Derive Odor Impact Criteria for a Wastewater Treatment Plant. Atmosphere, 2021, 12, 371.	2.3	5
64	A first approach in measuring, modeling, and forecasting the vitamin D effective UV radiation. , 2006, , .		4
65	UV Effects on Living Organisms. , 2013, , 609-688.		4
66	Are Empirical Equations an Appropriate Tool to Assess Separation Distances to Avoid Odour Annoyance?. Atmosphere, 2020, 11, 678.	2.3	4
67	UV Effects UV (ultraviolet) effects on Living Organisms. , 2012, , 11375-11427.		4
68	Environmental Odour. Atmosphere, 2021, 12, 1293.	2.3	4
69	Global Forecast Model to Predict the Daily Dose of the Solar Erythemally Effective UV Radiation [¶] . Photochemistry and Photobiology, 2005, 81, 154-162.	2.5	3
70	Environmental Odour: Emission, Dispersion, and the Assessment of Annoyance. Atmosphere, 2020, 11, 896.	2.3	3
71	Tracking Devices for Pets: Health Risk Assessment for Exposure to Radiofrequency Electromagnetic Fields. Animals, 2021, 11, 2721.	2.3	3
72	Odour Impact Assessment in a Changing Climate. Atmosphere, 2021, 12, 1149.	2.3	3

GUNTHER SCHAUBERGER

#	Article	IF	CITATIONS
73	UV Effects on Living Organisms. , 2018, , 1-63.		3
74	Operational Nowcasting of the Sun Protection Factor for the Urban Area of Vienna. Journal of Applied Meteorology and Climatology, 2001, 40, 836-842.	1.7	1
75	<title>Worldwide forecast of the biologically effective UV radiation: UV index and daily dose</title> . , 2002, , .		1
76	A COMPARISON OF ODOUR COMPLAINT STATISTICS WITH MODEL CALCULATIONS OF ODOUR EPISODES. Proceedings of the Water Environment Federation, 2006, 2006, 275-288.	0.0	1
77	How to transport veterinary drugs in insulated boxes to avoid thermal damage by heating or freezing. BMC Veterinary Research, 2017, 13, 140.	1.9	1
78	Exogenous creatinine clearence indexed to body surface area allows estimation of GFR and across species comparison. Research in Veterinary Science, 2021, 135, 36-41.	1.9	1
79	Dispersion modelling of environmental odours using hourly-resolved emission scenarios: Implications for impact assessments. Atmospheric Environment: X, 2021, 12, 100124.	1.4	1
80	Comparison of Models Used for UV Index Calculations. Photochemistry and Photobiology, 1998, 67, 657.	2.5	1
81	Reduction of the Economic Risk by Adaptation Measures to Alleviate Heat Stress in Confined Buildings for Growing-Fattening Pigs Modelled by a Projection for Central Europe in 2030. Agronomy, 2022, 12, 248.	3.0	1
82	<title>Total ozone content as input parameter for the prediction of the biologically effective UV radiation: analysis of the temporal and spatial variability over Austria</title> . , 2002, , .		0
83	Determination of the received daily visible and UV radiation dose as a function of weather, environment, and activity. , 2003, , .		0
84	Requirements for the spatial resolution, temporal resolution, and measuring uncertainties of total ozone measurements to calculate the erythemally effective UV radiation with a pre-selected accuracy. , 2006, , .		0