Jordi Cabot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8338692/publications.pdf

Version: 2024-02-01

229 papers 4,378 citations

201674

27

h-index

214800 47 g-index

249 all docs

249 docs citations

249 times ranked 2072 citing authors

#	Article	IF	CITATIONS
1	A generic LSTM neural network architecture to infer heterogeneous model transformations. Software and Systems Modeling, 2022, 21, 139-156.	2.7	11
2	A domain-specific language for the specification of UCON policies. Journal of Information Security and Applications, 2022, 64, 103006.	2.5	2
3	On the analysis of non-coding roles in open source development. Empirical Software Engineering, 2022, 27, 1.	3.9	6
4	User-driven diverse scenario exploration in model finders. Science of Computer Programming, 2022, 215, 102745.	1.9	1
5	Guest editorial to the theme section on Al-enhanced model-driven engineering. Software and Systems Modeling, 2022, 21, 963-965.	2.7	5
6	Model-driven development of asynchronous message-driven architectures with AsyncAPI. Software and Systems Modeling, 2022, 21, 1583-1611.	2.7	3
7	Enabling Content Management Systems as an Information Source in Model-Driven Projects. Lecture Notes in Business Information Processing, 2022, , 513-528.	1.0	1
8	Querying multidimensional big data through a chatbot system. , 2022, , .		1
9	A Tool forÂDebugging Unsatisfiable Integrity Constraints inÂUML/OCL Class Diagrams. Lecture Notes in Business Information Processing, 2022, , 267-275.	1.0	2
10	Towards Access Control Models forÂConversational User Interfaces. Lecture Notes in Business Information Processing, 2022, , 310-317.	1.0	1
11	A Hitchhiker's Guide to Model-Driven Engineering for Data-Centric Systems. IEEE Software, 2021, 38, 71-84.	1.8	19
12	Dealing with Non-Functional Requirements in Model-Driven Development: A Survey. IEEE Transactions on Software Engineering, 2021, 47, 818-835.	5.6	24
13	A Model-Based Chatbot Generation Approach to Converse with Open Data Sources. Lecture Notes in Computer Science, 2021, , 440-455.	1.3	8
14	The Software Challenges of Building Smart Chatbots. , 2021, , .		6
15	Modelâ€based assisted migration of oracle forms applications: The overall process in an industrial setting. Software - Practice and Experience, 2021, 51, 1641-1675.	3.6	0
16	All Researchers Should Become Entrepreneurs. , 2021, , .		0
17	Towards a model-driven approach for multiexperience Al-based user interfaces. Software and Systems Modeling, 2021, 20, 997-1009.	2.7	10
18	An NLP-Based Architecture forÂtheÂAutocompletion of Partial Domain Models. Lecture Notes in Computer Science, 2021, , 91-106.	1.3	29

#	Article	IF	CITATIONS
19	(Not) Yet Another Metamodel For Traceability. , 2021, , .		2
20	How are UML class diagrams built in practice? A usability study of two UML tools: Magicdraw and Papyrus. Computer Standards and Interfaces, 2020, 67, 103363.	5. 4	22
21	Efficient plagiarism detection for software modeling assignments. Computer Science Education, 2020, 30, 187-215.	3.7	7
22	Grand challenges in model-driven engineering: an analysis of the state of the research. Software and Systems Modeling, 2020, 19, 5-13.	2.7	96
23	Scalable modeling technologies in the wild: an experience report on wind turbines control applications development. Software and Systems Modeling, 2020, 19, 1229-1261.	2.7	5
24	Xatkit: A Multimodal Low-Code Chatbot Development Framework. IEEE Access, 2020, 8, 15332-15346.	4.2	76
25	Scalable model views over heterogeneous modeling technologies and resources. Software and Systems Modeling, 2020, 19, 827-851.	2.7	6
26	Towards Automating the Synthesis of Chatbots for Conversational Model Query. Lecture Notes in Business Information Processing, 2020, , 257-265.	1.0	9
27	OpenAPI Bot: A Chatbot to Help You Understand REST APIs. Lecture Notes in Computer Science, 2020, , 538-542.	1.3	17
28	Positioning of the low-code movement within the field of model-driven engineering. , 2020, , .		39
29	A Tool-Supported Approach for Building the Architecture and Roadmap in MegaM@Rt2 Project. Advances in Intelligent Systems and Computing, 2020, , 265-274.	0.6	1
30	Participation Inequality and the 90-9-1 Principle in Open Source. , 2020, , .		4
31	An OpenAPI-Based Testing Framework to Monitor Non-functional Properties of REST APIs. Lecture Notes in Computer Science, 2020, , 533-537.	1.3	3
32	Temporal Models on Time Series Databases Journal of Object Technology, 2020, 19, 3:1.	0.9	8
33	Towards Modeling Framework for DevOps: Requirements Derived from Industry Use Case. Lecture Notes in Computer Science, 2020, , 139-151.	1.3	3
34	Incremental Verification of UML/OCL Models Journal of Object Technology, 2020, 19, 3:1.	0.9	2
35	A model-based approach for developing event-driven architectures with AsyncAPI. , 2020, , .		8
36	Papyrus for gamers, let's play modeling. , 2020, , .		5

#	Article	IF	CITATIONS
37	Towards the optical character recognition of DSLs. , 2020, , .		5
38	On a tool-supported model-based approach for building architectures and roadmaps: The MegaM@Rt2 project experience. Microprocessors and Microsystems, 2019, 71, 102848.	2.8	1
39	Analysis and modeling of the governance in general programming languages. , 2019, , .		O
40	Online division of labour: emergent structures in Open Source Software. Scientific Reports, 2019, 9, 13890.	3.3	7
41	Stepwise Adoption of Continuous Delivery in Model-Driven Engineering. Lecture Notes in Computer Science, 2019, , 19-32.	1.3	11
42	Multi-platform Chatbot Modeling and Deployment with the Jarvis Framework. Lecture Notes in Computer Science, 2019, , 177-193.	1.3	14
43	On the Need for Intellectual Property Protection in Model-Driven Co-Engineering Processes. Lecture Notes in Business Information Processing, 2019, , 169-177.	1.0	0
44	Measuring Systems and Architectures: A Sustainability Perspective. IEEE Software, 2019, 36, 98-100.	1.8	3
45	Belief Uncertainty in Software Models. , 2019, , .		4
46	WAPIml: Towards a Modeling Infrastructure for Web APIs. , 2019, , .		5
47	Preface to the 1st Workshop on DevOps@MODELS., 2019,,.		0
48	UMLto[No]SQL: Mapping Conceptual Schemas to Heterogeneous Datastores., 2019,,.		7
49	An LSTM-Based Neural Network Architecture for Model Transformations. , 2019, , .		28
50	A feature-based survey of model view approaches. Software and Systems Modeling, 2019, 18, 1931-1952.	2.7	32
51	Smart Bound Selection for the Verification of UML/OCL Class Diagrams. IEEE Transactions on Software Engineering, 2019, 45, 412-426.	5.6	11
52	Advanced prefetching and caching of models with PrefetchML. Software and Systems Modeling, 2019, 18, 1773-1794.	2.7	7
53	The Future of Model Transformation Languages: An Open Community Discussion Journal of Object Technology, 2019, 18, 7:1.	0.9	17
54	A Systematic Approach to Generate Diverse Instantiations for Conceptual Schemas. Lecture Notes in Computer Science, 2019, , 513-521.	1.3	1

#	Article	IF	CITATIONS
55	Analyzing rich-club behavior in open source projects. , 2019, , .		2
56	Towards a UML and IFML Mapping to GraphQL. Lecture Notes in Computer Science, 2018, , 149-155.	1.3	4
57	Distributing relational model transformation on MapReduce. Journal of Systems and Software, 2018, 142, 1-20.	4.5	10
58	Gitana: A software project inspector. Science of Computer Programming, 2018, 153, 30-33.	1.9	6
59	Introduction to the special issue on the 18th international conference on model driven engineering languages and systems (MODELS'15). Software and Systems Modeling, 2018, 17, 715-716.	2.7	0
60	Fixing Defects in Integrity Constraints via Constraint Mutation. , 2018, , .		6
61	Towards a Language Server Protocol Infrastructure for Graphical Modeling. , 2018, , .		15
62	Robust Hashing for Models. , 2018, , .		8
63	A Feature-based Survey of Model View Approaches. , 2018, , .		22
64	Towards Scalable Model Views on Heterogeneous Model Resources. , 2018, , .		7
65	Automatic Generation of Test Cases for REST APIs: A Specification-Based Approach., 2018,,.		46
66	Applying graph kernels to model-driven engineering problems. , 2018, , .		18
67	The role of foundations in open source projects. , 2018, , .		12
68	Are CS conferences (too) closed communities?. Communications of the ACM, 2018, 61, 32-34.	4.5	7
69	APIComposer: Data-Driven Composition of REST APIs. Lecture Notes in Computer Science, 2018, , 161-169.	1.3	3
70	The MegaM@Rt2 ECSEL project: MegaModelling at Runtime â€" Scalable model-based framework for continuous development and runtime validation of complex systems. Microprocessors and Microsystems, 2018, 61, 86-95.	2.8	27
71	On Watermarking for Collaborative Model-Driven Engineering. IEEE Access, 2018, 6, 29715-29728.	4.2	10
72	Model-driven development of OData services: An application to relational databases. , 2018, , .		2

#	Article	IF	CITATIONS
73	WordPress: A Content Management System to Democratize Publishing. IEEE Software, 2018, 35, 89-92.	1.8	16
74	Automatic Generation of Security Compliant (Virtual) Model Views. Lecture Notes in Computer Science, 2018, , 109-117.	1.3	2
75	TemporalEMF: A Temporal Metamodeling Framework. Lecture Notes in Computer Science, 2018, , 365-381.	1.3	11
76	Cognifying Model-Driven Software Engineering. Lecture Notes in Computer Science, 2018, , 154-160.	1.3	17
77	Workshop in OCL and Textual Modelling. Lecture Notes in Computer Science, 2018, , 297-301.	1.3	O
78	Scalable Queries and Model Transformations with the Mogwa \tilde{A}^- Tool. Lecture Notes in Computer Science, 2018, , 175-183.	1.3	4
79	Model-based analysis of Java EE web security misconfigurations. Computer Languages, Systems and Structures, 2017, 49, 36-61.	1.4	5
80	Traceability Mappings as a Fundamental Instrument in Model Transformations. Lecture Notes in Computer Science, 2017, , 247-263.	1.3	6
81	Model-Driven Software Engineering in Practice: Second Edition. Synthesis Lectures on Software Engineering, 2017, 3, 1-207.	1.9	147
82	A Systematic Mapping Study of Software Development With GitHub. IEEE Access, 2017, 5, 7173-7192.	4.2	84
83	GitHub, Technical Debt, Code Formatting, and More. IEEE Software, 2017, 34, 105-107.	1.8	3
84	30 Years of Contributions to Conceptual Modeling. , 2017, , 7-23.		2
85	NeoEMF: A multi-database model persistence framework for very large models. Science of Computer Programming, 2017, 149, 9-14.	1.9	25
86	Better call the crowd: using crowdsourcing to shape the notation of domain-specific languages. , 2017, , .		7
87	Foreword to the special section on negative results in software engineering. Empirical Software Engineering, 2017, 22, 2453-2456.	3.9	7
88	The MegaM@Rt2 ECSEL Project: MegaModelling at Runtime â€" Scalable Model-Based Framework for Continuous Development and Runtime Validation of Complex Systems. , 2017, , .		4
89	An Empirical Study on the Maturity of the Eclipse Modeling Ecosystem. , 2017, , .		4
90	Gremlin-ATL: A scalable model transformation framework. , 2017, , .		9

#	Article	IF	Citations
91	Translating Target to Source Constraints in Model-to-Model Transformations., 2017,,.		10
92	A UML Profile for OData Web APIs. Lecture Notes in Computer Science, 2017, , 420-428.	1.3	3
93	Example-Driven Web API Specification Discovery. Lecture Notes in Computer Science, 2017, , 267-284.	1.3	21
94	On the Opportunities of Scalable Modeling Technologies: An Experience Report on Wind Turbines Control Applications Development. Lecture Notes in Computer Science, 2017, , 300-315.	1.3	5
95	Continuing a Benchmark for UML and OCL Design and Analysis Tools. Lecture Notes in Computer Science, 2016, , 289-302.	1.3	8
96	JSONDiscoverer: Visualizing the schema lurking behind JSON documents. Knowledge-Based Systems, 2016, 103, 52-55.	7.1	17
97	Findings from GitHub. , 2016, , .		55
98	Analysis of co-authorship graphs of CORE-ranked software conferences. Scientometrics, 2016, 109, 1665-1693.	3.0	6
99	PrefetchML., 2016,,.		10
100	Mogwa $ ilde{A}^-$: A framework to handle complex queries on large models. , 2016, , .		15
101	Lightweight and static verification of UML executable models. Computer Languages, Systems and Structures, 2016, 46, 66-90.	1.4	4
102	UMLtoGraphDB: Mapping Conceptual Schemas to Graph Databases. Lecture Notes in Computer Science, 2016, , 430-444.	1.3	45
103	Runtime support for rule-based access-control evaluation through model-transformation. , 2016, , .		6
104	MetaScience: An Holistic Approach for Research Modeling. Lecture Notes in Computer Science, 2016, , 365-380.	1.3	4
105	Foreword to the Thematic Track: Quality Aspects in Model-Driven Engineering. , 2016, , .		1
106	Efficient model partitioning for distributed model transformations. , 2016, , .		6
107	EMF-REST., 2016,,.		28
108	fREX., 2016,,.		12

#	Article	IF	CITATIONS
109	Model-based analysis of Java EE web security configurations. , 2016, , .		4
110	Regression Testing, Spoken Language, Crash-Inducing Commits, UML, and Legal Policy. IEEE Software, 2016, 33, 26-28.	1.8	1
111	Backwards reasoning for model transformations: Method and applications. Journal of Systems and Software, 2016, 116, 113-132.	4.5	13
112	Feature-based classification of bidirectional transformation approaches. Software and Systems Modeling, 2016, 15, 907-928.	2.7	49
113	Human Factors in the Adoption of Model-Driven Engineering: An Educator's Perspective. Lecture Notes in Computer Science, 2016, , 207-217.	1.3	4
114	Extending Conceptual Schemas with Business Process Information. , 2016, , 66-109.		0
115	Automatic code generation for cross-platform, multi-device mobile apps: some reflections from an industrial experience., 2015,,.		17
116	GiLA: GitHub label analyzer. , 2015, , .		22
117	Enabling the Definition and Enforcement of Governance Rules in Open Source Systems. , 2015, , .		4
118	Handling non-functional requirements in Model-Driven Development: An ongoing industrial survey. , 2015, , .		10
119	Distributed model-to-model transformation with ATL on MapReduce. , 2015, , .		15
120	An empirical study on simplification of business process modeling languages. , 2015, , .		2
121	Lightweight string reasoning in model finding. Software and Systems Modeling, 2015, 14, 413-427.	2.7	3
122	Assessing the bus factor of Git repositories. , 2015, , .		43
123	Software Modernization Revisited: Challenges and Prospects. Computer, 2015, 48, 76-80.	1.1	3
124	Exploring the use of labels to categorize issues in Open-Source Software projects. , 2015, , .		42
125	Corpus-based analysis of domain-specific languages. Software and Systems Modeling, 2015, 14, 889-904.	2.7	8
126	Model-Driven Integration and Analysis of Access-control Policies in Multi-layer Information Systems. IFIP Advances in Information and Communication Technology, 2015, , 218-233.	0.7	2

#	Article	IF	CITATIONS
127	Enabling the Reuse of Stored Model Transformations Through Annotations. Lecture Notes in Computer Science, 2015, , 43-58.	1.3	4
128	EMF Views: A View Mechanism for Integrating Heterogeneous Models. Lecture Notes in Computer Science, 2015, , 317-325.	1.3	31
129	Gitana: A SQL-Based Git Repository Inspector. Lecture Notes in Computer Science, 2015, , 329-343.	1.3	6
130	Map-Based Transparent Persistence for Very Large Models. Lecture Notes in Computer Science, 2015, , 19-34.	1.3	19
131	On the verification of UML/OCL class diagrams using constraint programming. Journal of Systems and Software, 2014, 93, 1-23.	4.5	88
132	Formal verification of static software models in MDE: A systematic review. Information and Software Technology, 2014, 56, 821-838.	4.4	43
133	MoDisco: A model driven reverse engineering framework. Information and Software Technology, 2014, 56, 1012-1032.	4.4	157
134	An Adapter-Based Approach to Co-evolve Generated SQL in Model-to-Text Transformations. Lecture Notes in Computer Science, 2014, , 518-532.	1.3	3
135	Composing JSON-Based Web APIs. Lecture Notes in Computer Science, 2014, , 390-399.	1.3	7
136	Test Data Generation for Model Transformations Combining Partition and Constraint Analysis. Lecture Notes in Computer Science, 2014, , 25-41.	1.3	12
137	Improving the Scalability of Web Applications with Runtime Transformations. Lecture Notes in Computer Science, 2014, , 430-439.	1.3	4
138	Non-functional Requirements in Architectural Decision Making. IEEE Software, 2013, 30, 61-67.	1.8	52
139	Management of stateful firewall misconfiguration. Computers and Security, 2013, 39, 64-85.	6.0	18
140	Discovering Implicit Schemas in JSON Data. Lecture Notes in Computer Science, 2013, , 68-83.	1.3	24
141	Extracting business rules from COBOL: A model-based framework. , 2013, , .		13
142	Extracting business rules from COBOL: A model-based tool., 2013,,.		4
143	Automating Inference of OCL Business Rules from User Scenarios. , 2013, , .		2
144	A research roadmap towards achieving scalability in model driven engineering. , 2013, , .		67

#	Article	IF	CITATIONS
145	Reverse Engineering of Database Security Policies. Lecture Notes in Computer Science, 2013, , 442-449.	1.3	5
146	Enabling the Collaborative Definition of DSMLs. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2013, , 272-287.	0.3	14
147	Initiating a Benchmark for UML and OCL Analysis Tools. Lecture Notes in Computer Science, 2013, , 115-132.	1.3	16
148	Engaging End-Users in the Collaborative Development of Domain-Specific Modelling Languages. Lecture Notes in Computer Science, 2013, , 101-110.	1.3	12
149	Model-Driven Extraction and Analysis of Network Security Policies. Lecture Notes in Computer Science, 2013, , 52-68.	1.3	5
150	Static Analysis of Model Transformations for Effective Test Generation. , 2012, , .		22
151	Architecture Quality Revisited. IEEE Software, 2012, 29, 22-24.	1.8	4
152	EMFtoCSP: A tool for the lightweight verification of EMF models. , 2012, , .		37
153	Community-driven language development. , 2012, , .		11
154	Model-Driven Software Engineering in Practice. Synthesis Lectures on Software Engineering, 2012, 1 , 1 -182.	1.9	254
155	A model-driven approach for the extraction of network access-control policies. , 2012, , .		7
156	How do software architects consider non-functional requirements: An exploratory study. , 2012, , .		70
157	Object Constraint Language (OCL): A Definitive Guide. Lecture Notes in Computer Science, 2012, , 58-90.	1.3	83
158	API2MoL: Automating the building of bridges between APIs and Model-Driven Engineering. Information and Software Technology, 2012, 54, 257-273.	4.4	16
159	MoScript: A DSL for Querying and Manipulating Model Repositories. Lecture Notes in Computer Science, 2012, , 180-200.	1.3	20
160	Cloning in DSLs: Experiments with OCL. Lecture Notes in Computer Science, 2012, , 60-76.	1.3	6
161	Using Models of Partial Knowledge to Test Model Transformations. Lecture Notes in Computer Science, 2012, , 24-39.	1.3	15
162	Lightweight String Reasoning for OCL. Lecture Notes in Computer Science, 2012, , 244-258.	1.3	12

#	Article	IF	CITATIONS
163	A Model Driven Reverse Engineering Framework for Extracting Business Rules Out of a Java Application. Lecture Notes in Computer Science, 2012, , 17-31.	1.3	15
164	On Verifying ATL Transformations Using â€~off-the-shelf' SMT Solvers. Lecture Notes in Computer Science, 2012, , 432-448.	1.3	41
165	ATLTest: A White-Box Test Generation Approach for ATL Transformations. Lecture Notes in Computer Science, 2012, , 449-464.	1.3	27
166	Verification of ATL Transformations Using Transformation Models and Model Finders. Lecture Notes in Computer Science, 2012, , 198-213.	1.3	56
167	EMF Profiles: A Lightweight Extension Approach for EMF Models Journal of Object Technology, 2012, 11, 8:1.	0.9	34
168	A Catalogue of Refactorings for Model-to-Model Transformations Journal of Object Technology, 2012, 11, 2:1.	0.9	34
169	Alf-Verifier: An Eclipse Plugin for Verifying Alf/UML Executable Models. Lecture Notes in Computer Science, 2012, , 378-382.	1.3	3
170	Workshop on OCL and textual modeling. , 2012, , .		0
171	ICMT 2011 Special Section Journal of Object Technology, 2012, 11, .	0.9	0
172	The MDE Diploma: first international postgraduate specialization in model-driven engineering. Computer Science Education, 2011, 21, 389-402.	3.7	8
173	Generating operation specifications from UML class diagrams: A model transformation approach. Data and Knowledge Engineering, 2011, 70, 365-389.	3.4	20
174	On validation of ATL transformation rules by transformation models. , 2011, , .		15
175	VirtualEMF: A Model Virtualization Tool. Lecture Notes in Computer Science, 2011, , 332-335.	1.3	13
176	From UML Profiles to EMF Profiles and Beyond. Lecture Notes in Computer Science, 2011, , 52-67.	1.3	15
177	Lazy Execution of Model-to-Model Transformations. Lecture Notes in Computer Science, 2011, , 32-46.	1.3	18
178	Towards a General Composition Semantics for Rule-Based Model Transformation. Lecture Notes in Computer Science, 2011, , 623-637.	1.3	29
179	Lightweight Verification of Executable Models. Lecture Notes in Computer Science, 2011, , 467-475.	1.3	6
180	Tenth International Workshop on OCL and Textual Modelling. Lecture Notes in Computer Science, 2011,, 329-333.	1.3	0

#	Article	IF	Citations
181	An MDE-Based Approach for Solving Configuration Problems: An Application to the Eclipse Platform. Lecture Notes in Computer Science, 2011, , 160-171.	1.3	1
182	MELO 2011 - 1st Workshop on Model-Driven Engineering, Logic and Optimization. Lecture Notes in Computer Science, 2011, , 379-380.	1.3	0
183	Theory and Practice of Model Transformations. Lecture Notes in Computer Science, 2011, , .	1.3	1
184	Verification and validation of declarative model-to-model transformations through invariants. Journal of Systems and Software, 2010, 83, 283-302.	4.5	110
185	Automatic generation of basic behavior schemas from UML class diagrams. Software and Systems Modeling, 2010, 9, 47-67.	2.7	13
186	A UML/OCL framework for the analysis of graph transformation rules. Software and Systems Modeling, 2010, 9, 335-357.	2.7	13
187	From UML/OCL to SBVR specifications: A challenging transformation. Information Systems, 2010, 35, 417-440.	3.6	62
188	Extending Conceptual Schemas with Business Process Information. Advances in Software Engineering, 2010, 2010, 1-22.	0.6	8
189	Situational Evaluation of Method Fragments: An Evidence-Based Goal-Oriented Approach. Lecture Notes in Computer Science, 2010, , 424-438.	1.3	40
190	Towards Model Driven Tool Interoperability: Bridging Eclipse and Microsoft Modeling Tools. Lecture Notes in Computer Science, 2010, , 32-47.	1.3	20
191	MoDisco., 2010,,.		109
192	Dealing with Non-Functional Requirements in Model-Driven Development. , 2010, , .		48
193	Adopting agile methods: Can goal-oriented social modeling help?. , 2010, , .		6
194	Lightweight Executability Analysis of Graph Transformation Rules. , 2010, , .		0
195	Improving Higher-Order Transformations Support in ATL. Lecture Notes in Computer Science, 2010, , 215-229.	1.3	23
196	Synthesis of OCL Pre-conditions for Graph Transformation Rules. Lecture Notes in Computer Science, 2010, , 45-60.	1.3	4
197	Specifying Aggregation Functions in Multidimensional Models with OCL. Lecture Notes in Computer Science, 2010, , 419-432.	1.3	10
198	Tools for Modeling and Generating Safe Interface Interactions in Web Applications. Lecture Notes in Computer Science, 2010, , 482-485.	1.3	0

#	Article	IF	CITATIONS
199	Evaluating the Consistency between Navigation and Data Models for Web Applications. International Journal of Information System Modeling and Design, 2010, 1, 68-85.	1.1	0
200	Integrating sustainability in decision-making processes: A modelling strategy. , 2009, , .		31
201	Incremental integrity checking of UML/OCL conceptual schemas. Journal of Systems and Software, 2009, 82, 1459-1478.	4.5	62
202	Relationship-based change propagation: A case study. , 2009, , .		17
203	Verifying UML/OCL Operation Contracts. Lecture Notes in Computer Science, 2009, , 40-55.	1.3	46
204	Verifying Action Semantics Specifications in UML Behavioral Models. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2009, , 125-140.	0.3	12
205	Modelling Safe Interface Interactions in Web Applications. Lecture Notes in Computer Science, 2009, , 387-400.	1.3	5
206	Verification of UML/OCL Class Diagrams using Constraint Programming., 2008,,.		141
207	A Catalogue of Refactorings for Navigation Models. , 2008, , .		6
208	From programming to modeling. , 2008, , .		6
208	From programming to modeling. , 2008, , . Paraphrasing OCL Expressions with SBVR. Lecture Notes in Computer Science, 2008, , 311-316.	1.3	11
		1.3	
209	Paraphrasing OCL Expressions with SBVR. Lecture Notes in Computer Science, 2008, , 311-316. Analysing Graph Transformation Rules through OCL. Lecture Notes in Computer Science, 2008, ,		11
209	Paraphrasing OCL Expressions with SBVR. Lecture Notes in Computer Science, 2008, , 311-316. Analysing Graph Transformation Rules through OCL. Lecture Notes in Computer Science, 2008, , 229-244. An Invariant-Based Method for the Analysis of Declarative Model-to-Model Transformations. Lecture	1.3	10
209 210 211	Paraphrasing OCL Expressions with SBVR. Lecture Notes in Computer Science, 2008, , 311-316. Analysing Graph Transformation Rules through OCL. Lecture Notes in Computer Science, 2008, , 229-244. An Invariant-Based Method for the Analysis of Declarative Model-to-Model Transformations. Lecture Notes in Computer Science, 2008, , 37-52.	1.3	11 10 5
209 210 211 212	Paraphrasing OCL Expressions with SBVR. Lecture Notes in Computer Science, 2008, , 311-316. Analysing Graph Transformation Rules through OCL. Lecture Notes in Computer Science, 2008, , 229-244. An Invariant-Based Method for the Analysis of Declarative Model-to-Model Transformations. Lecture Notes in Computer Science, 2008, , 37-52. UMLtoCSP. , 2007, , .	1.3	11 10 5 123
209 210 211 212 213	Paraphrasing OCL Expressions with SBVR. Lecture Notes in Computer Science, 2008, , 311-316. Analysing Graph Transformation Rules through OCL. Lecture Notes in Computer Science, 2008, , 229-244. An Invariant-Based Method for the Analysis of Declarative Model-to-Model Transformations. Lecture Notes in Computer Science, 2008, , 37-52. UMLtoCSP. , 2007, , . Transformation techniques for OCL constraints. Science of Computer Programming, 2007, 68, 179-195.	1.3	11 10 5 123 37

#	Article	IF	CITATIONS
217	From Declarative to Imperative UML/OCL Operation Specifications. Lecture Notes in Computer Science, 2007, , 198-213.	1.3	17
218	Deriving Operation Contracts from UML Class Diagrams. Lecture Notes in Computer Science, 2007, , 196-210.	1.3	7
219	Constraint tuning and management for web applications. , 2006, , .		4
220	Transforming OCL constraints., 2006,,.		7
221	Conceptual Modelling Patterns for Roles. Lecture Notes in Computer Science, 2006, , 158-184.	1.3	7
222	Incremental Evaluation of OCL Constraints. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2006, , 81-95.	0.3	24
223	Constraint Support in MDA Tools: A Survey. Lecture Notes in Computer Science, 2006, , 256-267.	1.3	20
224	Roles as Entity Types: A Conceptual Modelling Pattern. Lecture Notes in Computer Science, 2004, , 69-82.	1.3	8
225	Determining the Structural Events That May Violate an Integrity Constraint. Lecture Notes in Computer Science, 2004, , 320-334.	1.3	9
226	Entity Types Derived by Symbol-Generating Rules. Lecture Notes in Computer Science, 2003, , 376-389.	1.3	1
227	Representing Temporal Information in UML. Lecture Notes in Computer Science, 2003, , 44-59.	1.3	17
228	Efficient model similarity estimation with robust hashing. Software and Systems Modeling, 0, , 1.	2.7	5
229	Collaboro: a collaborative (meta) modeling tool. PeerJ Computer Science, 0, 2, e84.	4.5	22