
Stefano Trocino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8338630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials, 2018, 11, 1368.	2.9	88
2	Assessment of the FAA3-50 polymer electrolyte in combination with a NiMn2O4 anode catalyst for anion exchange membrane water electrolysis. International Journal of Hydrogen Energy, 2020, 45, 9285-9292.	7.1	77
3	Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles. Applied Catalysis B: Environmental, 2018, 220, 98-110.	20.2	64
4	Electrospun V2O5 composite fibers: Synthesis, characterization and ammonia sensing properties. Thin Solid Films, 2013, 548, 689-694.	1.8	63
5	CO gas sensing performance of electrospun Co3O4 nanostructures at low operating temperature. Sensors and Actuators B: Chemical, 2020, 303, 127193.	7.8	40
6	Analysis of performance degradation during steady-state and load-thermal cycles of proton exchange membrane water electrolysis cells. Journal of Power Sources, 2020, 468, 228390.	7.8	37
7	Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air. Sensors, 2012, 12, 12361-12373.	3.8	36
8	Development of an ammonia sensor based on silver nanoparticles in a poly-methacrylic acid matrix. Journal of Materials Chemistry C, 2014, 2, 5778.	5.5	35
9	Thermoelectric characterization of an intermediate temperature solid oxide fuel cell system directly fed by dry biogas. Energy Conversion and Management, 2016, 127, 90-102.	9.2	33
10	Gas sensing properties under UV radiation of In2O3 nanostructures processed by electrospinning. Materials Chemistry and Physics, 2014, 147, 35-41.	4.0	32
11	Investigation of Ni-based alloy/CGO electro-catalysts as protective layer for a solid oxide fuel cell anode fed with ethanol. Journal of Applied Electrochemistry, 2015, 45, 647-656.	2.9	30
12	New insights on the co-electrolysis of CO2 and H2O through a solid oxide electrolyser operating at intermediate temperatures. Electrochimica Acta, 2019, 296, 458-464.	5.2	30
13	High performance solid-state iron-air rechargeable ceramic battery operating at intermediate temperatures (500–650â€ [~] °C). Applied Energy, 2019, 233-234, 386-394.	10.1	28
14	Electrospinning of Polyaniline: Effect of Different Raw Sources. Journal of Nanoscience and Nanotechnology, 2013, 13, 4744-4751.	0.9	26
15	Iron–Air Battery Operating at High Temperature. Energy Technology, 2017, 5, 670-680.	3.8	18
16	Investigation of NiFe-Based Catalysts for Oxygen Evolution in Anion-Exchange Membrane Electrolysis. Energies, 2020, 13, 1720.	3.1	18
17	Production of syngas by solid oxide electrolysis: AÂcase study. International Journal of Hydrogen Energy, 2017, 42, 27859-27865.	7.1	17
18	Nickel–Iron/Gadoliniumâ€Doped Ceria (CGO) Composite Electrocatalyst as a Protective Layer for a Solidâ€Oxide Fuel Cell Anode Fed with Biofuels, ChemCatChem, 2016, 8, 648-655.	3.7	16

STEFANO TROCINO

#	Article	IF	CITATIONS
19	Oxygen-sensing properties of electrospun CNTs/PVAc/TiO2 composites. Electronic Materials Letters, 2014, 10, 305-313.	2.2	14
20	Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a NiFe-Oxide co-Catalyst. Catalysts, 2020, 10, 525.	3.5	13
21	Study of a Solid Oxide Fuel Cell fed with n-dodecane reformate. Part I: Endurance test. International Journal of Hydrogen Energy, 2016, 41, 5741-5747.	7.1	12
22	Study of a solid oxide fuel cell fed with n-dodecane reformate. Part II: Effect of the reformate composition. International Journal of Hydrogen Energy, 2017, 42, 1751-1757.	7.1	12
23	Anionic Exchange Membrane for Photo-Electrolysis Application. Polymers, 2020, 12, 2991.	4.5	12
24	Solid Oxide Fuel Cell Fed Directly with Dry Glycerol. Energy Technology, 2019, 7, 45-47.	3.8	10
25	Dry Hydrogen Production in a Tandem Critical Raw Material-Free Water Photoelectrolysis Cell Using a Hydrophobic Gas-Diffusion Backing Layer. Catalysts, 2020, 10, 1319.	3.5	9
26	Real-time thermal imaging of solid oxide fuel cell cathode activity in working condition. Applied Optics, 2016, 55, 7142.	2.1	8
27	Sucrose-Assisted Solution Combustion Synthesis of Doped Strontium Ferrate Perovskite-Type Electrocatalysts: Primary Role of the Secondary Fuel. Catalysts, 2020, 10, 134.	3.5	7
28	Water Splitting with Enhanced Efficiency Using a Nickel-Based Co-Catalyst at a Cupric Oxide Photocathode. Catalysts, 2021, 11, 1363.	3.5	7
29	Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts, 2022, 12, 293.	3.5	3
30	Microstructural, Electrical and Hydrogen Sensing Properties of F-SnO2 Nanoparticles. Procedia Engineering, 2014, 87, 1087-1090.	1.2	2
31	Ni-based Alloys as Protective Layer for a Conventional Solid Oxide Fuel Cell Fed with Biofuels. ECS Transactions, 2015, 68, 2653-2658.	0.5	2
32	Electrochemical Investigation of a Large SOFC Fed with n-Dodecane Reformate. ECS Transactions, 2015, 68, 2845-2849.	0.5	0
33	A Simple Approach to Enhance the Direct Production of Methane through Co-Electrolysis of CO2 and H2O. ECS Transactions, 2019, 91, 2343-2350.	0.5	0