Michael J Schuliga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/833813/publications.pdf Version: 2024-02-01

MICHAEL SCHULICA

#	Article	IF	CITATIONS
1	NF-kappaB Signaling in Chronic Inflammatory Airway Disease. Biomolecules, 2015, 5, 1266-1283.	4.0	331
2	The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Frontiers in Physiology, 2017, 8, 777.	2.8	162
3	Upregulation of Glutathione-Related Genes and Enzyme Activities in Cultured Human Cells by Sublethal Concentrations of Inorganic Arsenic. Toxicological Sciences, 2002, 70, 183-192.	3.1	120
4	Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L162-L172.	2.9	114
5	Annexinâ€l signals mitogenâ€stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2. FASEB Journal, 2011, 25, 483-496.	0.5	95
6	2-Methoxyestradiol – a unique blend of activities generating a new class of anti-tumour/anti-inflammatory agents. Drug Discovery Today, 2007, 12, 577-584.	6.4	92
7	The Inflammatory Actions of Coagulant and Fibrinolytic Proteases in Disease. Mediators of Inflammation, 2015, 2015, 1-9.	3.0	81
8	Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell and Tissue Research, 2005, 322, 353-364.	2.9	77
9	Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clinical Science, 2020, 134, 2681-2706.	4.3	73
10	KCa3.1 Ca2+Activated K+Channels Regulate Human Airway Smooth Muscle Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 525-531.	2.9	69
11	Mitochondrial dysfunction contributes to the senescent phenotype of <scp>IPF</scp> lung fibroblasts. Journal of Cellular and Molecular Medicine, 2018, 22, 5847-5861.	3.6	65
12	The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. , 2019, 10, 419.		59
13	STAT3 Regulates the Onset of Oxidant-induced Senescence in Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 61-73.	2.9	52
14	The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. International Journal of Biochemistry and Cell Biology, 2018, 97, 108-117.	2.8	49
15	2-Methoxyestradiol Is an Estrogen Receptor Agonist That Supports Tumor Growth in Murine Xenograft Models of Breast Cancer. Clinical Cancer Research, 2005, 11, 1722-1732.	7.0	47
16	Transforming Growth Factor–β–Induced Differentiation of Airway Smooth Muscle Cells Is Inhibited by Fibroblast Growth Factor–2. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 346-353.	2.9	45
17	Pro-inflammatory mediators increase levels of the noncoding RNA GAS5 in airway smooth muscle and epithelial cells. Canadian Journal of Physiology and Pharmacology, 2015, 93, 203-206.	1.4	44
18	Collagen impairs glucocorticoid actions in airway smooth muscle through integrin signalling. British Journal of Pharmacology, 2006, 149, 365-373.	5.4	43

MICHAEL J SCHULIGA

#	Article	IF	CITATIONS
19	The plasminogen activation system: new targets in lung inflammation and remodeling. Current Opinion in Pharmacology, 2013, 13, 386-393.	3.5	41
20	Tissue and matrix influences on airway smooth muscle function. Pulmonary Pharmacology and Therapeutics, 2009, 22, 379-387.	2.6	40
21	Transforming growth factorâ€Î² impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line. British Journal of Pharmacology, 2012, 166, 2036-2048.	5.4	38
22	In Vitro and In Vivo Evidence for Anti-Inflammatory Properties of 2-Methoxyestradiol. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 962-972.	2.5	33
23	Regulation of pulmonary inflammation by mesenchymal cells. Pulmonary Pharmacology and Therapeutics, 2014, 29, 156-165.	2.6	33
24	Stimulusâ€dependent glucocorticoidâ€resistance of GMâ€CSF production in human cultured airway smooth muscle. British Journal of Pharmacology, 2005, 145, 123-131.	5.4	31
25	Airway smooth muscle remodels pericellular collagen fibrils: implications for proliferation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L584-L592.	2.9	31
26	Annexin A2 contributes to lung injury and fibrosis by augmenting factor Xa fibrogenic activity. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L772-L782.	2.9	30
27	Senescence of IPF Lung Fibroblasts Disrupt Alveolar Epithelial Cell Proliferation and Promote Migration in Wound Healing. Pharmaceutics, 2020, 12, 389.	4.5	30
28	Casein Kinase 1Î/ε Inhibitor, PF670462 Attenuates the Fibrogenic Effects of Transforming Growth Factor-β in Pulmonary Fibrosis. Frontiers in Pharmacology, 2018, 9, 738.	3.5	28
29	Self DNA perpetuates IPF lung fibroblast senescence in a cGAS-dependent manner. Clinical Science, 2020, 134, 889-905.	4.3	28
30	Fibrillar Collagen Clamps Lung Mesenchymal Cells in a Nonproliferative and Noncontractile Phenotype. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 731-741.	2.9	27
31	Functional Expression of IgG-Fc Receptors in Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 665-672.	2.9	27
32	The fibrogenic actions of lung fibroblast-derived urokinase: a potential drug target in IPF. Scientific Reports, 2017, 7, 41770.	3.3	26
33	Resistance of fibrogenic responses to glucocorticoid and 2-methoxyestradiol in bleomycin-induced lung fibrosis in miceThis article is one of a selection of papers published in the Special Issue on Recent Advances in Asthma Research Canadian Journal of Physiology and Pharmacology, 2007, 85, 727-738.	1.4	24
34	Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Research Reviews, 2021, 70, 101405.	10.9	22
35	Plasminogen-Stimulated Inflammatory Cytokine Production by Airway Smooth Muscle Cells Is Regulated by Annexin A2. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 751-758.	2.9	20
36	Plasminogenâ€stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin <scp>A</scp> 2, involving plasminâ€activated cell signalling. British Journal of Pharmacology, 2013, 170, 1421-1435.	5.4	20

MICHAEL J SCHULIGA

#	Article	IF	CITATIONS
37	Epithelial Mesenchymal Transition in Respiratory Disease. Chest, 2020, 157, 1591-1596.	0.8	18
38	A cGAS-dependent response links DNA damage and senescence in alveolar epithelial cells: a potential drug target in IPF. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L859-L871.	2.9	17
39	Plasminogen Activation by Airway Smooth Muscle Is Regulated by Type I Collagen. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 831-839.	2.9	16
40	The Coagulant Factor Xa Induces Protease-Activated Receptor-1 and Annexin A2–Dependent Airway Smooth Muscle Cytokine Production and Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 200-209.	2.9	13
41	Regulation of Cellular Senescence Is Independent from Profibrotic Fibroblast-Deposited ECM. Cells, 2021, 10, 1628.	4.1	12
42	A Senescence Bystander Effect in Human Lung Fibroblasts. Biomedicines, 2021, 9, 1162.	3.2	12
43	The Potential and Suitability of 2-Methoxyestradiol in Cancer Therapy. Clinical Cancer Research, 2005, 11, 6094-6096.	7.0	11
44	Regulation of redox and DNA repair genes by arsenic. , 2003, , 305-319.		4
45	Smooth Muscle and Extracellular Matrix Interactions in Health and Disease. , 0, , .		2
46	Modeling the impact of low-dose particulate matter on lung health. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L550-L553.	2.9	2
47	Alveolar epithelial wound repair is delayed by scenescent lung fibroblasts in IPF. , 2019, , .		1
48	ASK1ng to Delay the Progression of Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 465-467.	2.9	1
49	Glucocorticoid Resistance In Human Airway Epithelial Cells: A Potential Role For Transforming Growth Factor-beta. , 2010, , .		Ο
50	Transforming Growth Factor Beta Regulates Plasminogen Activation By Airway Smooth Muscle. , 2010, , .		0
51	Plasmin Formation By Airway Smooth Muscle Is Accelerated By Culture On Fibrillar Type 1 Collagen. , 2010, , .		0
52	Transforming Growth Factor Beta (TGFBeta) Induces Glucocorticoid-Resistance In A549 Adenocarcinoma Cell Line By Reducing Glucocorticoid Receptor Nuclear Localisation. , 2011, , .		0
53	Plasmin Stimulates Airway Smooth Muscle Cells To Proliferate And Produce Interleukin-6. , 2011, , .		0