
FrantiÅjek Wald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8338002/publications.pdf Version: 2024-02-01

ΕρλητιΔιέκ Μλισ

#	Article	IF	CITATIONS
1	Shear resistance of sandwich panel connection at elevated temperature. Journal of Structural Fire Engineering, 2022, 13, 162-170.	0.8	2
2	Emissivity of hot-dip galvanized surfaces in future development of EN 1993-1-2. Journal of Structural Fire Engineering, 2022, 13, 535-557.	0.8	6
3	Thermal Model for Timber Fire Exposure with Moving Boundary. Materials, 2021, 14, 574.	2.9	1
4	Advanced Design of Block Shear Failure. Metals, 2021, 11, 1088.	2.3	0
5	Strain Design Limit for Hollow Section Joints. Ce/Papers, 2021, 4, 2488-2494.	0.3	1
6	Numerical modelling of fire test with timber fire protection. Journal of Structural Fire Engineering, 2021, ahead-of-print, .	0.8	1
7	Fire response model of the steel fibre reinforced concrete filled tubular column. Journal of Constructional Steel Research, 2021, 186, 106884.	3.9	10
8	Behaviour of seismically damaged extended stiffened end-plate joints at elevated temperature. Engineering Structures, 2021, 247, 113193.	5.3	10
9	Lateral-torsional buckling of class 4 section uniform and web tapered beams at elevated temperature. Thin-Walled Structures, 2020, 146, 106458.	5.3	17
10	Timber beam in virtual furnace. Journal of Structural Fire Engineering, 2020, 11, 437-446.	0.8	2
11	Temperature analysis of steel structures protected by intumescent paint with steel claddings in fire. Fire and Materials, 2020, 44, 897-908.	2.0	4
12	Component based finite element design of steel joints. Civil Engineering Design, 2020, 2, 78-89.	1.9	1
13	Multi‣evel Joints and Element Design. Ce/Papers, 2019, 3, 379-384.	0.3	2
14	Numerical investigation of slender reinforced concrete and steel-concrete composite columns at normal and high temperatures using sectional analysis and moment-curvature approach. Engineering Structures, 2019, 190, 285-305.	5.3	15
15	Design finite element model of a bolted T-stub connection component. Journal of Constructional Steel Research, 2019, 157, 198-206.	3.9	37
16	Linked simulation for fire-exposed elements using CFD and thermo-mechanical models. Advances in Engineering Software, 2019, 131, 12-22.	3.8	11
17	Timber steel-fibre-reinforced concrete floor slabs subjected to fire. European Journal of Wood and Wood Products, 2018, 76, 201-212.	2.9	5
18	Holistic approach to sustainability of bridges. Steel Construction, 2018, 11, 179-183.	0.8	2

FrantiÅiek Wald

#	Article	IF	CITATIONS
19	10.02: Numerical simulation of fire-resistance test of steel beam. Ce/Papers, 2017, 1, 2518-2525.	0.3	2
20	Experimental investigation on SFRC behaviour under elevated temperature. Journal of Structural Fire Engineering, 2017, 8, 287-299.	0.8	7
21	00.05: Validation and verification in design of structural steel connections. Ce/Papers, 2017, 1, 143-152.	0.3	0
22	Design of haunches in structural steel joints. Journal of Civil Engineering and Management, 2017, 23, 765-772.	3.5	8
23	03.17: Design of haunches in structural steel joints. Ce/Papers, 2017, 1, 639-648.	0.3	Ο
24	10.29: The thermal response of corrugated web beams subjected to fire. Ce/Papers, 2017, 1, 2765-2770.	0.3	0
25	Application of fire and evacuation models in evaluation of fire safety in railway tunnels. IOP Conference Series: Materials Science and Engineering, 2017, 236, 012080.	0.6	2
26	Flexural stiffness of the composite steel and fibre-reinforced concrete circular hollow section column. IOP Conference Series: Materials Science and Engineering, 2017, 246, 012021.	0.6	0
27	Heat transfer in hybrid fibre reinforced concrete-steel composite column exposed to a gas-fired radiant heater. IOP Conference Series: Materials Science and Engineering, 2017, 246, 012050.	0.6	1
28	EXPERIMENTAL METHOD ON INVESTIGATION OF FIBRE REINFORCED CONCRETE AT ELEVATED TEMPERATURES. Acta Polytechnica, 2016, 56, 258-264.	0.6	7
29	VERIFICATION OF NUMERICAL MODEL OF FIRE AND SMOKE DEVELOPMENT IN RAILWAY TUNNEL. Applications of Structural Fire Engineering, 2016, , .	0.3	1
30	CONSTITUTIVE MODEL OF STEEL FIBRE REINFORCED CONCRETE SUBJECTED TO HIGH TEMPERATURES. Acta Polytechnica, 2016, 56, 417-424.	0.6	8
31	TO TESTING OF STEEL FIBRE REINFORCED CONCRETE AT ELEVATED TEMPERATURE. Applications of Structural Fire Engineering, 2016, , .	0.3	1
32	Beams with corrugated web at elevated temperature, analytical and numerical models for heat transfer. Fire Safety Journal, 2016, 86, 83-94.	3.1	5
33	An analytical method to calculate temperatures of components of reverse channel connection to concrete filled steel section under fire conditions. Fire Safety Journal, 2016, 82, 115-130.	3.1	5
34	Advanced prediction methods in structural fire safety engineering. , 2016, , .		0
35	Beams with corrugated web at elevated temperature, experimental results. Thin-Walled Structures, 2016, 98, 19-28.	5.3	9
36	Experiments of Class 4 open section beams at elevated temperature. Thin-Walled Structures, 2016, 98, 2-18.	5.3	36

FrantiÅiek Wald

#	Article	IF	CITATIONS
37	VERIFICATION AND VALIDATION OF NUMERICAL MODEL OF FIRE AND SMOKE DEVELOPMENT IN RAILWAY TUNNEL. Acta Polytechnica, 2016, 56, 432-439.	0.6	2
38	Benchmark for numerical analysis of steel and composite floors exposed to fire using a general purpose FEM code. Journal of Applied Engineering Science, 2016, 14, 275-284.	0.9	6
39	Timber Steel Fiber–Reinforced Concrete Floor Slabs in Fire: Experimental and Numerical Modeling. Journal of Structural Engineering, 2015, 141, 04014214.	3.4	8
40	Fire Test of Timber-fibre Concrete Composite Floor. Journal of Structural Fire Engineering, 2015, 6, 147-154.	0.8	1
41	The Effect of Transient Heat Transfer Analysis on Corrugated Web Beams. , 2015, , .		Ο
42	Slender Compressed Plate in Component Based Finite Element Model. IOP Conference Series: Materials Science and Engineering, 2015, 96, 012050.	0.6	3
43	Reduction of Connection Resistance During VeselÃ-Fire Tests. Journal of Structural Fire Engineering, 2015, 6, 21-28.	0.8	3
44	Analytical model of composite floors with steel fibre reinforced concrete slab subjected to fire. Journal of Civil Engineering and Management, 2015, 23, 204-212.	3.5	1
45	Influence of Zinc Coating to a Temperature of Steel Members in Fire. Journal of Structural Fire Engineering, 2015, 6, 141-146.	0.8	6
46	Temperatures and thermal boundary conditions in reverse channel connections to concrete filled steel sections during standard and natural fire tests. Fire Safety Journal, 2015, 78, 55-70.	3.1	5
47	Temperature heterogeneity during travelling fire on experimental building. Advances in Engineering Software, 2013, 62-63, 119-130.	3.8	36
48	A Note From the Guest Editor. Journal of Structural Fire Engineering, 2013, 4, i-ii.	0.8	0
49	Experiments on membrane action of composite floors with steel fibre reinforced concrete slab exposed to fire. Fire Safety Journal, 2013, 59, 111-121.	3.1	36
50	Fire Resistance of Cast Iron Columns. Journal of Structural Fire Engineering, 2013, 4, 95-102.	0.8	1
51	Temperature of a partially embedded connection subjected to fire. Fire Safety Journal, 2012, 54, 121-129.	3.1	2
52	Membrane Action of Composite Fibre Concrete Slab in Fire. Procedia Engineering, 2012, 40, 498-503.	1.2	8
53	Behaviour of steel-to-concrete joints - moment resisting joint of a composite beam to reinforced concrete wall. Steel Construction, 2011, 4, 161-165.	0.8	3
54	Behaviour of column web component of steel beam-to-column joints at elevated temperatures. Journal of Constructional Steel Research, 2011, 67, 1890-1899.	3.9	7

FrantiÅiek Wald

#	Article	IF	CITATIONS
55	Column Web Panel at Elevated Temperature. Fire Technology, 2010, 46, 37-47.	3.0	2
56	Horizontal forces in steel structures tested in fire. Journal of Constructional Steel Research, 2009, 65, 1896-1903.	3.9	16
57	Temperatures during fire tests on structure and its prediction according to Eurocodes. Fire Safety Journal, 2009, 44, 135-146.	3.1	24
58	Temperature of connections during fire on steel framed building. International Journal of Steel Structures, 2009, 9, 47-55.	1.3	6
59	Design of corrugated sheets exposed to fire. Steel and Composite Structures, 2008, 8, 231-242.	1.3	3
60	Experimental behaviour of a steel structure under natural fire. Fire Safety Journal, 2006, 41, 509-522.	3.1	201
61	Temperature distribution in a full-scale steel framed building subject to a natural fire. Steel and Composite Structures, 2006, 6, 159-182.	1.3	20
62	Stresses in steel columns under natural fire. , 2005, , 259-266.		0
63	Stiffness of cover plate connections with slotted holes. Journal of Constructional Steel Research, 2004, 60, 621-634.	3.9	7
64	Embedded steel column bases. Journal of Constructional Steel Research, 2000, 56, 253-270.	3.9	27
65	Embedded steel column bases. Journal of Constructional Steel Research, 2000, 56, 271-286.	3.9	15
66	Stiffness design of column bases. Journal of Constructional Steel Research, 1998, 46, 245.	3.9	4
67	Discussion of " Semibifurcation and Bifurcation Analysis of Flexibly Connected Steel Frames ―by W. M. G. Ho and S. L. Chan (August, 1991, Vol. 17, No. 8). Journal of Structural Engineering, 1993, 119, 3104-3105.	3.4	0
68	Sensitivity of semi-rigid frames to initial imperfections. Journal of Constructional Steel Research, 1991, 18, 309-316.	3.9	0
69	Advanced procedures for design of bolted connections. IOP Conference Series: Materials Science and Engineering, 0, 419, 012044.	0.6	2