Cyril Ollivier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8337793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organoboranes as a Source of Radicals. Chemical Reviews, 2001, 101, 3415-3434.	47.7	483
2	Silicates as Latent Alkyl Radical Precursors: Visibleâ€Light Photocatalytic Oxidation of Hypervalent Bisâ€Catecholato Silicon Compounds. Angewandte Chemie - International Edition, 2015, 54, 11414-11418.	13.8	247
3	Photoredox Catalysis for the Generation of Carbon Centered Radicals. Accounts of Chemical Research, 2016, 49, 1924-1936.	15.6	226
4	Visibleâ€Lightâ€Induced Photoreductive Generation of Radicals from Epoxides and Aziridines. Angewandte Chemie - International Edition, 2011, 50, 4463-4466.	13.8	208
5	Aryl Radical Formation by Copper(I) Photocatalyzed Reduction of Diaryliodonium Salts: NMR Evidence for a Cu ^{II} /Cu ^I Mechanism. Chemistry - A European Journal, 2013, 19, 10809-10813.	3.3	142
6	Visible‣ight Photocatalytic Reduction of Sulfonium Salts as a Source of Aryl Radicals. Advanced Synthesis and Catalysis, 2013, 355, 1477-1482.	4.3	104
7	Iron and cobalt catalysis: new perspectives in synthetic radical chemistry. Chemical Society Reviews, 2020, 49, 8501-8542.	38.1	91
8	A dinuclear gold(<scp>i</scp>) complex as a novel photoredox catalyst for light-induced atom transfer radical polymerization. Polymer Chemistry, 2015, 6, 4605-4611.	3.9	85
9	Photosensitized oxidative addition to gold(i) enables alkynylative cyclization of o-alkylnylphenols with iodoalkynes. Nature Chemistry, 2019, 11, 797-805.	13.6	84
10	Radical Migration of Substituents of Aryl Groups on Quinazolinones Derived from <i>N</i> -Acyl Cyanamides. Journal of the American Chemical Society, 2010, 132, 4381-4387.	13.7	81
11	Organic photoredox catalysis for the oxidation of silicates: applications in radical synthesis and dual catalysis. Chemical Communications, 2016, 52, 9877-9880.	4.1	81
12	Primary alkyl bis-catecholato silicates in dual photoredox/nickel catalysis: aryl- and heteroaryl-alkyl cross coupling reactions. Organic Chemistry Frontiers, 2016, 3, 462-465.	4.5	80
13	Dual Photoredox/Gold Catalysis Arylative Cyclization of <i>o</i> -Alkynylphenols with Aryldiazonium Salts: A Flexible Synthesis of Benzofurans. Journal of Organic Chemistry, 2016, 81, 7182-7190.	3.2	79
14	Enantioselective lr ^l â€Catalyzed Carbocyclization of 1,6â€Enynes by the Chiral Counterion Strategy. Chemistry - A European Journal, 2011, 17, 13789-13794.	3.3	77
15	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 1789-1793.	13.8	68
16	Iron atalyzed Reductive Radical Cyclization of Organic Halides in the Presence of NaBH ₄ : Evidence of an Active Hydridoâ€Iron(I) Catalyst. Angewandte Chemie - International Edition, 2012, 51, 6942-6946.	13.8	61
17	Intramolecular Homolytic Substitution of Sulfinates and Sulfinamides. Chemistry - A European Journal, 2009, 15, 10225-10232.	3.3	58
18	Silver-Catalyzed Cycloisomerization of 1,n-Allenynamides. Organic Letters, 2011, 13, 2952-2955.	4.6	51

CYRIL OLLIVIER

#	Article	IF	CITATIONS
19	Visible Light Photocatalytic Reduction of <i>O</i> â€Thiocarbamates: Development of a Tinâ€Free Barton–McCombie Deoxygenation Reaction. Advanced Synthesis and Catalysis, 2014, 356, 2756-2762.	4.3	46
20	Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chemical Society Reviews, 2022, 51, 1470-1510.	38.1	44
21	Photoredox/Nickel Dual Catalysis for the C(sp ³)–C(sp ³) Crossâ€Coupling of Alkylsilicates with Alkyl Halides. European Journal of Organic Chemistry, 2017, 2017, 2118-2121.	2.4	37
22	Cross coupling of alkylsilicates with acyl chlorides <i>via</i> photoredox/nickel dual catalysis: a new synthesis method for ketones. Organic Chemistry Frontiers, 2019, 6, 1378-1382.	4.5	37
23	Synthesis of Aliphatic Amides through a Photoredox Catalyzed Radical Carbonylation Involving Organosilicates as Alkyl Radical Precursors. Advanced Synthesis and Catalysis, 2020, 362, 2254-2259.	4.3	31
24	Single-Electron-Transfer Oxidation of Trifluoroborates and Silicates with Organic Reagents: A Comparative Study. Synlett, 2016, 27, 731-735.	1.8	27
25	Homolytic Reduction of Onium Salts. Chimia, 2012, 66, 425-432.	0.6	25
26	Visible-light photocatalytic oxidation of 1,3-dicarbonyl compounds and carbon–carbon bond formation. Organic Chemistry Frontiers, 2014, 1, 551.	4.5	25
27	On the Influence of the Protonation States of Active Site Residues on AChE Reactivation: A QM/MM Approach. ChemBioChem, 2017, 18, 666-675.	2.6	22
28	Carbonylation of Alkyl Radicals Derived from Organosilicates through Visible‣ight Photoredox Catalysis. Angewandte Chemie, 2019, 131, 1803-1807.	2.0	22
29	A Parisian Vision of the Chemistry of Hypercoordinated Silicon Derivatives. Chemical Record, 2021, 21, 1119-1129.	5.8	21
30	Elucidating Dramatic Ligand Effects on SET Processes: Iron Hydride versus Iron Borohydride Catalyzed Reductive Radical Cyclization of Unsaturated Organic Halides. Organometallics, 2018, 37, 761-771.	2.3	17
31	Tin-free Alternatives to the Barton-McCombie Deoxygenation of Alcohols to Alkanes Involving Reductive Electron Transfer. Chimia, 2016, 70, 67.	0.6	14
32	Iron(II) catalyzed reductive radical cyclization reactions of bromoacetals in the presence of NaBH4: optimization studies and mechanistic insights. Tetrahedron, 2016, 72, 7727-7737.	1.9	13
33	Trifluoromethyl radical triggered radical cyclization of N-benzoyl ynamides leading to isoindolinones. Science China Chemistry, 2019, 62, 1542-1546.	8.2	13
34	Reactant-induced photoactivation of in situ generated organogold intermediates leading to alkynylated indoles via Csp2-Csp cross-coupling. Nature Communications, 2022, 13, 2295.	12.8	12
35	Phenyl Silicates with Substituted Catecholate Ligands: Synthesis, Structural Studies and Reactivity. Chemistry - A European Journal, 2021, 27, 8782-8790.	3.3	11
36	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic Arylation of Alkyl Bis(catecholato)silicates. Organic Letters, 2022, 24, 2483-2487.	4.6	11

CYRIL OLLIVIER

#	Article	IF	CITATIONS
37	Gold-catalyzed cycloisomerization of [3]-cumulenols. Journal of Organometallic Chemistry, 2015, 795, 53-57.	1.8	10
38	Chiral Phosphate in Rhodium atalyzed Asymmetric [2+2+2] Cycloaddition: Ligand, Counterion, or Both?. Chemistry - A European Journal, 2016, 22, 8553-8558.	3.3	10
39	A HELIXOLâ€Derived Bisphosphinite Ligand: Synthesis and Application in Goldâ€Catalyzed Enynes Cycloisomerization. European Journal of Organic Chemistry, 2019, 2019, 2129-2137.	2.4	9
40	Organometallic catalysis under visible light activation: benefits and preliminary rationales. Photochemical and Photobiological Sciences, 2022, , 1.	2.9	7
41	Helical Bisphosphinites in Asymmetric Tsujiâ€Trost Allylation: a Remarkable P:Pd Ratio Effect. ChemCatChem, 2021, 13, 4543-4548.	3.7	6
42	Visible-Light-Mediated Z-Stereoselective Monoalkylation of β,β-Dichlorostyrenes by Photoredox/Nickel Dual Catalysis. Synlett, 2021, 32, 1513-1518.	1.8	4
43	Stereoselective Synthesis of Substituted 3a-Hydroxy Diquinanones and 3a-Hydroxy Hydrindanones via Intramolecular Cycloaddition of Nitrile Oxides. Synthetic Communications, 2009, 40, 87-103.	2.1	3
44	Iron and Single Electron Transfer: All is in the Ligand. Israel Journal of Chemistry, 2017, 57, 1160-1169.	2.3	2
45	Towards Visibleâ€Light Photocatalytic Reduction of Hypercoordinated Silicon Species. Helvetica Chimica Acta, 2020, 103, e1900238.	1.6	2
46	Bis(catecholato)silicates: Synthesis and Structural Data. European Journal of Inorganic Chemistry, 0, ,	2.0	2
47	Frontispiece: Silicates as Latent Alkyl Radical Precursors: Visibleâ€Light Photocatalytic Oxidation of Hypervalent Bisâ€Catecholato Silicon Compounds. Angewandte Chemie - International Edition, 2015, 54, . 	13.8	0
48	Frontispiz: Silicates as Latent Alkyl Radical Precursors: Visible-Light Photocatalytic Oxidation of Hypervalent Bis-Catecholato Silicon Compounds. Angewandte Chemie, 2015, 127, n/a-n/a.	2.0	0