
Amelia-Elena Rotaru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8337518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy and Environmental Science, 2014, 7, 408-415.	30.8	1,074
2	Promoting direct interspecies electron transfer with activated carbon. Energy and Environmental Science, 2012, 5, 8982.	30.8	718
3	Direct Interspecies Electron Transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 2014, 80, 4599-4605.	3.1	714
4	Geobacter. Advances in Microbial Physiology, 2011, 59, 1-100.	2.4	541
5	Potential for Direct Interspecies Electron Transfer in Methanogenic Wastewater Digester Aggregates. MBio, 2011, 2, e00159-11.	4.1	472
6	Promoting Interspecies Electron Transfer with Biochar. Scientific Reports, 2014, 4, 5019.	3.3	429
7	Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource Technology, 2014, 173, 82-86.	9.6	323
8	Magnetite compensates for the lack of a pilinâ€associated <scp><i>c</i></scp> â€ŧype cytochrome in extracellular electron exchange. Environmental Microbiology, 2015, 17, 648-655.	3.8	300
9	Toward the Integrated Marine Debris Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	178
10	Plugging in or going wireless: strategies for interspecies electron transfer. Frontiers in Microbiology, 2014, 5, 237.	3.5	177
11	Transcriptomic and Genetic Analysis of Direct Interspecies Electron Transfer. Applied and Environmental Microbiology, 2013, 79, 2397-2404.	3.1	168
12	Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Applied and Environmental Microbiology, 2012, 78, 7645-7651.	3.1	148
13	Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environmental Microbiology Reports, 2013, 5, 904-910.	2.4	137
14	Link between capacity for current production and syntrophic growth in Geobacter species. Frontiers in Microbiology, 2015, 6, 744.	3.5	133
15	<i>Syntrophus</i> conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. ISME Journal, 2020, 14, 837-846.	9.8	106
16	Characterization and modelling of interspecies electron transfer mechanisms and microbial community dynamics of a syntrophic association. Nature Communications, 2013, 4, 2809.	12.8	103
17	Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes. Scientific Reports, 2020, 10, 372.	3.3	84
18	Extracellular Electron Uptake by Two Methanosarcina Species. Frontiers in Energy Research, 2019, 7, .	2.3	80

Amelia-Elena Rotaru

#	Article	IF	CITATIONS
19	Formation of palladium(0) nanoparticles at microbial surfaces. Biotechnology and Bioengineering, 2010, 107, 206-215.	3.3	78
20	<i>Geobacter</i> Strains Expressing Poorly Conductive Pili Reveal Constraints on Direct Interspecies Electron Transfer Mechanisms. MBio, 2018, 9, .	4.1	78
21	Electron and Proton Flux for Carbon Dioxide Reduction in Methanosarcina barkeri During Direct Interspecies Electron Transfer. Frontiers in Microbiology, 2018, 9, 3109.	3.5	75
22	Conductive Particles Enable Syntrophic Acetate Oxidation between <i>Geobacter</i> and <i>Methanosarcina</i> from Coastal Sediments. MBio, 2018, 9, .	4.1	69
23	Nonâ€enzymatic palladium recovery on microbial and synthetic surfaces. Biotechnology and Bioengineering, 2012, 109, 1889-1897.	3.3	65
24	Microbially supported synthesis of catalytically active bimetallic Pdâ€Au nanoparticles. Biotechnology and Bioengineering, 2012, 109, 45-52.	3.3	52
25	Cultivating electroactive microbes—from field to bench. Nanotechnology, 2020, 31, 174003.	2.6	52
26	Highly enriched <i>Betaproteobacteria</i> growing anaerobically with <i>p</i> -xylene and nitrate. FEMS Microbiology Ecology, 2010, 71, 460-468.	2.7	45
27	Baltic Sea methanogens compete with acetogens for electrons from metallic iron. ISME Journal, 2019, 13, 3011-3023.	9.8	45
28	Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens. PLoS Computational Biology, 2014, 10, e1003575.	3.2	38
29	Microbes trading electricity in consortia of environmental and biotechnological significance. Current Opinion in Biotechnology, 2021, 67, 119-129.	6.6	37
30	Let's chat: Communication between electroactive microorganisms. Bioresource Technology, 2022, 347, 126705.	9.6	33
31	Potential for Methanosarcina to Contribute to Uranium Reduction during Acetate-Promoted Groundwater Bioremediation. Microbial Ecology, 2018, 76, 660-667.	2.8	27
32	A new diet for methane oxidizers. Science, 2016, 351, 658-658.	12.6	21
33	An underappreciated DIET for anaerobic petroleum hydrocarbonâ€degrading microbial communities. Microbial Biotechnology, 2021, 14, 2-7.	4.2	16
34	Interspecies interactions mediated by conductive minerals in the sediments of the Iron rich Meromictic Lake La Cruz, Spain. , 2019, 38, 21-40.		16
35	Visualization of Candidate Division OP3 Cocci in Limonene-Degrading Methanogenic Cultures. Journal of Microbiology and Biotechnology, 2012, 22, 457-461.	2.1	14
36	A Win–Loss Interaction on FeO Between Methanogens and Acetogens From a Climate Lake. Frontiers in Microbiology, 2021, 12, 638282.	3.5	7

#	Article	IF	CITATIONS
37	Editorial: Wired for Life. Frontiers in Microbiology, 2016, 7, 662.	3.5	2