
Shouping Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8337155/publications.pdf Version: 2024-02-01

SHOUDING LUI

#	Article	IF	CITATIONS
1	Membrane-Active Antibacterial Agents Based on Calix[4]arene Derivatives: Synthesis and Biological Evaluation. Frontiers in Chemistry, 2022, 10, 816741.	1.8	5
2	<i>De Novo</i> Design of Flavonoid-Based Mimetics of Cationic Antimicrobial Peptides: Discovery, Development, and Applications. Accounts of Chemical Research, 2021, 54, 104-119.	7.6	38
3	Design, Synthesis, and Biological Evaluation of Membrane-Active Bakuchiol Derivatives as Effective Broad-Spectrum Antibacterial Agents. Journal of Medicinal Chemistry, 2021, 64, 5603-5619.	2.9	49
4	Rational Design of Dipicolylamine-Containing Carbazole Amphiphiles Combined with Zn ²⁺ as Potent Broad-Spectrum Antibacterial Agents with a Membrane-Disruptive Mechanism. Journal of Medicinal Chemistry, 2021, 64, 10429-10444.	2.9	24
5	Development of Amphiphilic Coumarin Derivatives as Membrane-Active Antimicrobial Agents with Potent <i>In Vivo</i> Efficacy against Gram-Positive Pathogenic Bacteria. ACS Infectious Diseases, 2021, 7, 2864-2875.	1.8	10
6	Synthesis and biological evaluation of indole-based peptidomimetics as antibacterial agents against Gram-positive bacteria. European Journal of Medicinal Chemistry, 2021, 226, 113813.	2.6	18
7	Development of Highly Potent Carbazole Amphiphiles as Membrane-Targeting Antimicrobials for Treating Gram-Positive Bacterial Infections. Journal of Medicinal Chemistry, 2020, 63, 9284-9299.	2.9	37
8	Propargylic Alcohols as Coupling Partners in Transitionâ€Metal atalyzed Arene Câ^'H Activation. Advanced Synthesis and Catalysis, 2020, 362, 5238-5256.	2.1	48
9	In Vitro and in Vivo Evaluation of Membrane-Active Flavone Amphiphiles: Semisynthetic Kaempferol-Derived Antimicrobials against Drug-Resistant Gram-Positive Bacteria. Journal of Medicinal Chemistry, 2020, 63, 5797-5815.	2.9	43
10	Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents. European Journal of Medicinal Chemistry, 2020, 202, 112596.	2.6	9
11	Potent in vitro and in vivo antimicrobial activity of semisynthetic amphiphilic Î ³ -mangostin derivative LSO2 against Gram-positive bacteria with destructive effect on bacterial membrane. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183353.	1.4	13
12	Antimicrobial activity profiles of Amphiphilic Xanthone derivatives are a function of their molecular Oligomerization. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2281-2298.	1.4	18
13	Design and synthesis of oligo-lipidated arginyl peptide (OLAP) dimers with enhanced physicochemical activity, peptide stability and their antimicrobial actions against MRSA infections. Amino Acids, 2018, 50, 1329-1345.	1.2	3
14	Symmetrically Substituted Xanthone Amphiphiles Combat Gram-Positive Bacterial Resistance with Enhanced Membrane Selectivity. Journal of Medicinal Chemistry, 2017, 60, 1362-1378.	2.9	68
15	Semisynthetic Flavone-Derived Antimicrobials with Therapeutic Potential against Methicillin-Resistant <i>Staphylococcus aureus</i> (MRSA). Journal of Medicinal Chemistry, 2017, 60, 6152-6165.	2.9	77
16	Recent advances in synthetic lipopeptides as anti-microbial agents: designs and synthetic approaches. Amino Acids, 2017, 49, 1653-1677.	1.2	27
17	Semisynthesis and Biological Evaluation of Xanthone Amphiphilics as Selective, Highly Potent Antifungal Agents to Combat Fungal Resistance. Journal of Medicinal Chemistry, 2017, 60, 10135-10150.	2.9	36
18	Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Frontiers in Neuroscience, 2017, 11, 73.	1.4	388

SHOUPING LIU

#	Article	IF	CITATIONS
19	Membrane-targeting AM-0016 kills mycobacterial persisters and shows low propensity for resistance development. Future Microbiology, 2016, 11, 643-650.	1.0	36
20	Amphiphilic xanthones as a potent chemical entity of anti-mycobacterial agents with membrane-targeting properties. European Journal of Medicinal Chemistry, 2016, 123, 684-703.	2.6	30
21	Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering. Biomaterials, 2016, 104, 323-338.	5.7	166
22	Nonpeptidic Amphiphilic Xanthone Derivatives: Structure–Activity Relationship and Membrane-Targeting Properties. Journal of Medicinal Chemistry, 2016, 59, 171-193.	2.9	47
23	Biofilms of Pathogenic Nontuberculous Mycobacteria Targeted by New Therapeutic Approaches. Antimicrobial Agents and Chemotherapy, 2016, 60, 24-35.	1.4	53
24	Multifunctional Polyphenols- and Catecholamines-Based Self-Defensive Films for Health Care Applications. ACS Applied Materials & Interfaces, 2016, 8, 1220-1232.	4.0	68
25	A novel fragment based strategy for membrane active antimicrobials against MRSA. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1023-1031.	1.4	36
26	N-Lipidated Peptide Dimers: Effective Antibacterial Agents against Gram-Negative Pathogens through Lipopolysaccharide Permeabilization. Journal of Medicinal Chemistry, 2015, 58, 6533-6548.	2.9	43
27	Amino Acid Modified Xanthone Derivatives: Novel, Highly Promising Membrane-Active Antimicrobials for Multidrug-Resistant Gram-Positive Bacterial Infections. Journal of Medicinal Chemistry, 2015, 58, 739-752.	2.9	109
28	Synthetic Multivalent Antifungal Peptides Effective against Fungi. PLoS ONE, 2014, 9, e87730.	1.1	33
29	Design and Synthesis of Amphiphilic Xanthone-Based, Membrane-Targeting Antimicrobials with Improved Membrane Selectivity. Journal of Medicinal Chemistry, 2013, 56, 2359-2373.	2.9	88
30	Sensitive detection of DNA by hyperbranched diketopyrrolopyrrole-based conjugated polyelectrolytes. Sensors and Actuators B: Chemical, 2013, 182, 176-183.	4.0	23
31	Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1112-1121.	1.4	56
32	Rapid bactericidal action of alpha-mangostin against MRSA as an outcome of membrane targeting. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 834-844.	1.4	147
33	Progressive Structuring of a Branched Antimicrobial Peptide on the Path to the Inner Membrane Target. Journal of Biological Chemistry, 2012, 287, 26606-26617.	1.6	32
34	Cationic conjugated polyelectrolyte-based sensitive fluorescence assay for adenosinetriphosphate and alkaline phosphatase. Sensors and Actuators B: Chemical, 2012, 171-172, 652-657.	4.0	15
35	Synthesis of cationic diacetyleneâ€ <i>co</i> â€carbazoleâ€ <i>co</i> â€fluorene polymers and their sensitive fluorescent quenching properties with DNA. Journal of Polymer Science Part A, 2010, 48, 4168-4177.	2.5	21
36	Structure-Dependent Charge Density as a Determinant of Antimicrobial Activity of Peptide Analogues of Defensin. Biochemistry, 2009, 48, 7229-7239.	1.2	64

#	Article	IF	CITATIONS
37	Linear Analogues of Human βâ€Đefensin 3: Concepts for Design of Antimicrobial Peptides with Reduced Cytotoxicity to Mammalian Cells. ChemBioChem, 2008, 9, 964-973.	1.3	73