Sumanta Kumar Padhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8337135/publications.pdf

Version: 2024-02-01

623734 752698 42 534 14 citations h-index papers

g-index 43 43 43 536 docs citations times ranked citing authors all docs

20

#	Article	IF	CITATIONS
1	Cu(NO3)2·3H2O-Mediated Synthesis of 4â€~-(2-Pyridyl)-2,2â€~:6â€~,2â€~ â€~-terpyridine (L2) from N-(2-Pyridylmethyl)pyridine-2-methylketimine (L1). A Câ^C Bond-Forming Reaction and the Structure of {[Cu(L2)(OH)(NO3)][Cu(L2)(NO3)2]}·2H2O. Inorganic Chemistry, 2006, 45, 7994-7996.	4.0	42
2	Photoisomerization and Proton-Coupled Electron Transfer (PCET) Promoted Water Oxidation by Mononuclear Cyclometalated Ruthenium Catalysts. Inorganic Chemistry, 2012, 51, 5386-5392.	4.0	38
3	Conversion of 2-(aminomethyl) substituted pyridine and quinoline to their dicarbonyldiimides using copper(II) acetate. Inorganica Chimica Acta, 2010, 363, 1448-1454.	2.4	28
4	\hat{l} /4-Pyridine-bridged copper complex with robust proton-reducing ability. Dalton Transactions, 2017, 46, 14869-14879.	3.3	23
5	Proton reduction by a Ni(II) catalyst and foot-of-the wave analysis for H2 evolution. International Journal of Hydrogen Energy, 2019, 44, 16467-16477.	7.1	23
6	Synthesis, structure, optical and magnetic properties of [CrL(X)3], {L=4′-(2-pyridyl)-2,2′:6′,2″-terpyridir X=Clâ⁻¹, N3â⁻¹, NCSâ⁻²}. Polyhedron, 2008, 27, 1714-1720.	ne; 2:2	22
7	Proton reduction by a nickel complex with an internal quinoline moiety for proton relay. Physical Chemistry Chemical Physics, 2016, 18, 21640-21650.	2.8	22
8	Redox-Induced Structural Switching through Sporadic Pyridine-Bridged Co ^{II} Co ^{III} Dimer and Electrocatalytic Proton Reduction. Inorganic Chemistry, 2020, 59, 7810-7821.	4.0	19
9	Proton-Induced Dynamic Equilibrium between Cyclometalated Ruthenium rNHC (Remote) Tj ETQq1 1 0.784314 rg 2011, 50, 5321-5323.	<u> </u>	ock 10 Tf 50 18
10	Photo- and Electrochemical Redox Behavior of Cyclometalated Ru(II) Complexes Having a 3-Phenylbenzo[<i>b</i>][1,6]naphthyridine Ligand. Inorganic Chemistry, 2011, 50, 10718-10723.	4.0	18
11	Competent Electrocatalytic and Photocatalytic Proton Reduction by a Dechelated [Co(tpy) ₂] ²⁺ Scaffold. European Journal of Inorganic Chemistry, 2017, 2017, 3409-3418.	2.0	18
12	Solid-state kinetics of thermal release of pyridine and morphological study of [Ni(ampy)2(NO3)2]; ampy=2-picolylamine. Thermochimica Acta, 2006, 448, 1-6.	2.7	16
13	Synthesis, structure and properties of [ML(NO3)2]: M=Co, Ni, Cu; L=N-(2-pyridylethyl)pyridine-2-carbaldimine. Polyhedron, 2007, 26, 1619-1624.	2.2	14
14	Kinetics and the potential well in electrochemical hydrogen evolution by [Co(4-tolyl-tpy)2]2+. Electrochimica Acta, 2020, 340, 136000.	5.2	14
15	Co(II/III) coordinated pyridine alcoholate ligand generated through metal assisted nucleophilic addition to a CO function: Temperature dependent synthesis of a mononuclear complex and a neutral cubane cluster. Polyhedron, 2008, 27, 2662-2666.	2.2	13
16	Comparative Study of C $\langle sup \rangle \hat{a}^s \langle sup \rangle N$ and N $\langle sup \rangle \hat{a}^s \langle sup \rangle C$ Type Cyclometalated Ruthenium Complexes with a NAD $\langle sup \rangle + \langle sup \rangle NADH$ Function. Inorganic Chemistry, 2012, 51, 8091-8102.	4.0	13
17	Synthesis, structure, thermal studies on $Zn(II)$, $Cd(II)$ complexes of N-(2-pyridylmethyl)pyridine-2-carbaldimine and N-(2-pyridylmethyl)pyridine-2-methylketimine. Polyhedron, 2008, 27, 805-811.	2.2	12
18	Ni(II) complexes of 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine: Structure of mono- and bis-chelates containing anionâ√Ï€ interactions. Polyhedron, 2008, 27, 2221-2225.	2.2	12

#	Article	IF	CITATIONS
19	[Ru ^V (NCN-Me)(bpy)(î€O)] ³⁺ Mediates efficient C–H bond oxidation from NADH analogs in aqueous media rather than water oxidation. Dalton Transactions, 2015, 44, 920-923.	3.3	12
20	Effect of Pyridyl Substitution on Chemical and Photochemical Water Oxidation by [Ru(terpyridine)(bipyridine)(OH ₂)] ²⁺ Scaffolds. European Journal of Inorganic Chemistry, 2017, 2017, 160-171.	2.0	12
21	Ligand dechelation effect on a [Co(tpy) ₂] ²⁺ scaffold towards electro-catalytic proton and water reduction. New Journal of Chemistry, 2019, 43, 3856-3865.	2.8	12
22	Syntheses and structures of cobalt(III) alcoholate complexes formed by addition of a water molecule across 2-pyridyl substituted imine function. Inorganica Chimica Acta, 2011, 367, 57-63.	2.4	10
23	[Ru ^V (NCN-Me)(bpy)(î€O)] ³⁺ mediated efficient photo-driven water oxidation. RSC Advances, 2016, 6, 61959-61965.	3.6	10
24	Electrocatalytic proton and water reduction by a Co(III) polypyridyl complex. Polyhedron, 2019, 159, 127-134.	2.2	10
25	Kinetics and mechanistic study of electrocatalytic hydrogen evolution by [Co(Fc-tpy)2]2+. Polyhedron, 2020, 187, 114677.	2.2	10
26	Synthesis, spectral, and structural investigation of [ML(NO3)2]: M=Co, Ni, Cu; L=N-(2-pyridylethyl)pyridine-2-methylketimine. Polyhedron, 2007, 26, 3092-3096.	2.2	8
27	Water–chloride 2D-network in 4′-(2-pyridyl)-2,2′:6′,2′′-terpyridine bis-chelates of M(II) {M=Fe, Ni, Polyhedron, 2010, 29, 709-714.	, <u>Ru</u> }.	8
28	Electronic Effect on Catalytic Water Oxidation by Single Site [Ru(QCl–tpy)(bpy)(OH ₂)] ²⁺ Catalyst. ChemistrySelect, 2017, 2, 123-129.	1.5	8
29	Synthesis, Characterization, and Structure of Quinolineâ€based Benzimidazole Derivatives. Journal of Heterocyclic Chemistry, 2019, 56, 988-997.	2.6	8
30	Electrocatalytic proton reduction by dinuclear cobalt complexes in a nonaqueous electrolyte. New Journal of Chemistry, 2022, 46, 6027-6038.	2.8	8
31	Protonated 4′-(2-pyridyl)-2,2′:6′,2″-terpyridine and its Fe(II) bischelates: Syntheses and molecular structures. Inorganica Chimica Acta, 2011, 372, 383-388.	2.4	7
32	Electrocatalytic hydrogen evolution by molecular Cu(II) catalysts. Polyhedron, 2021, 208, 115425.	2.2	7
33	Effectual electrocatalytic proton and water reduction by Cull terpyridine scaffolds. Electrochimica Acta, 2020, 364, 137277.	5.2	6
34	A flexible homoleptic pentadentate Cu(II) molecular catalyst for effective proton and water reduction. Electrochimica Acta, 2020, 354, 136614.	5.2	6
35	Catalytic Water Oxidation by a Ru II Half Sandwich Complex. European Journal of Inorganic Chemistry, 2021, 2021, 3499-3505.	2.0	5

Effect of Quinoline Substitution on Water Oxidation by [Ru(Ql-tpy)(bpy)(OH₂) Tj ETQq0 0 0 rgBT /Overlock 10 If 50 62 Td II.5

#	Article	IF	CITATIONS
37	Dehydrogenation of Formic Acid by a Ru ^{II} Half Sandwich Catalyst. ChemistrySelect, 2021, 6, 9447-9452.	1.5	4
38	The sporadic $\hat{1}$ /4-pyridine bridge in transition metal complexes: A real bond or an interaction?. Coordination Chemistry Reviews, 2022, 450, 214238.	18.8	4
39	Fabrication of a Hierarchical TiO ₂ Microsphere/Carbon Dots Photocatalyst for Oxygen Evolution and Dye Degradation Under Visible Light. Journal of Nanoscience and Nanotechnology, 2018, 18, 1057-1065.	0.9	3
40	Catalytic water oxidation by a single site [Ru(Fc-tpy)(bpy)OH2]2+ complex and it's mechanistic study. Inorganica Chimica Acta, 2020, 504, 119444.	2.4	3
41	Electrocatalytic CO ₂ Reduction to Syngas and HCOOH by Homogeneous Fcâ€NAP ₂ . European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	3
42	Water Oxidation by a Neoteric Dinuclear Mn(II) Electrocatalyst in Aqueous Medium. European Journal of Inorganic Chemistry, 0 , , .	2.0	1