Eek-hoon Jho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336943/publications.pdf

Version: 2024-02-01

117453 91712 5,130 87 34 69 h-index citations g-index papers 90 90 90 8285 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Wnt \hat{I}^2 -Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. Molecular and Cellular Biology, 2002, 22, 1172-1183.	1.1	1,498
2	Wnt/l²-catenin signalling: from plasma membrane to nucleus. Biochemical Journal, 2013, 450, 9-21.	1.7	269
3	Domains of Axin Involved in Protein–Protein Interactions, Wnt Pathway Inhibition, and Intracellular Localization. Journal of Cell Biology, 1999, 145, 741-756.	2.3	246
4	Hippo signaling interactions with Wnt/ \hat{l}^2 -catenin and Notch signaling repress liver tumorigenesis. Journal of Clinical Investigation, 2016, 127, 137-152.	3.9	190
5	Phosphorylation by <scp>NLK</scp> inhibits <scp>YAP</scp> â€14â€3â€3â€interactions and induces its nuclear localization. EMBO Reports, 2017, 18, 61-71.	2.0	139
6	Mechanotransduction activates canonical Wnt/ \hat{l}^2 -catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes and Development, 2016, 30, 1454-1469.	2.7	121
7	Osmotic stressâ€induced phosphorylation by <scp>NLK</scp> at Ser128 activates <scp>YAP</scp> . EMBO Reports, 2017, 18, 72-86.	2.0	112
8	Wnt-7a Causes Loss of Differentiated Phenotype and Inhibits Apoptosis of Articular Chondrocytes via Different Mechanisms. Journal of Biological Chemistry, 2004, 279, 26597-26604.	1.6	99
9	Hydrogen peroxide negatively modulates Wnt signaling through downregulation of \hat{l}^2 -catenin. Cancer Letters, 2004, 212, 225-231.	3.2	98
10	A GSK3 \hat{i}^2 Phosphorylation Site in Axin Modulates Interaction with \hat{i}^2 -Catenin and Tcf-Mediated Gene Expression. Biochemical and Biophysical Research Communications, 1999, 266, 28-35.	1.0	95
11	The Protein Stability of Axin, a Negative Regulator of Wnt Signaling, Is Regulated by Smad Ubiquitination Regulatory Factor 2 (Smurf2). Journal of Biological Chemistry, 2010, 285, 36420-36426.	1.6	91
12	Purification of GSK-3 by Affinity Chromatography on Immobilized Axin. Protein Expression and Purification, 2000, 20, 394-404.	0.6	90
13	The role of GDNF in patterning the excretory system. Developmental Biology, 2005, 283, 70-84.	0.9	71
14	Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Reports, 2014, 47, 540-545.	1.1	69
15	Identification of a Stroma-Mediated Wnt \hat{l}^2 -Catenin Signal Promoting Self-Renewal of Hematopoietic Stem Cells in the Stem Cell Niche. Stem Cells, 2009, 27, 1318-1329.	1.4	67
16	LPS-induced inflammatory response is suppressed by Wnt inhibitors, Dickkopf-1 and LGK974. Scientific Reports, 2017, 7, 41612.	1.6	65
17	Axin Inhibits Extracellular Signal-regulated Kinase Pathway by Ras Degradation via \hat{l}^2 -Catenin. Journal of Biological Chemistry, 2007, 282, 14482-14492.	1.6	63
18	c-Jun Amino-terminal Kinase Is Regulated by Gα12/Gα13 and Obligate for Differentiation of P19 Embryonal Carcinoma Cells by Retinoic Acid. Journal of Biological Chemistry, 1997, 272, 24468-24474.	1.6	61

#	Article	IF	CITATIONS
19	Domains of Axin and Disheveled Required for Interaction and Function in Wnt Signaling. Biochemical and Biophysical Research Communications, 2000, 276, 1162-1169.	1.0	61
20	Mest/Peg1 inhibits Wnt signalling through regulation of LRP6 glycosylation. Biochemical Journal, 2011, 436, 263-269.	1.7	56
21	Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4691-4696.	3.3	56
22	Complementary Wnt Sources Regulate Lymphatic Vascular Development via PROX1-Dependent Wnt/β-Catenin Signaling. Cell Reports, 2018, 25, 571-584.e5.	2.9	55
23	The history and regulatory mechanism of the Hippo pathway. BMB Reports, 2018, 51, 106-118.	1.1	53
24	SGK1 inhibition in glia ameliorates pathologies and symptoms in Parkinson disease animal models. EMBO Molecular Medicine, 2021, 13, e13076.	3.3	52
25	Hippo signaling is intrinsically regulated during cell cycle progression by APC/C ^{Cdh1} . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9423-9432.	3.3	48
26	Past, present, and future perspectives of transcription factor EB (TFEB): mechanisms of regulation and association with disease. Cell Death and Differentiation, 2022, 29, 1433-1449.	5.0	48
27	Protein arginine methyltransferases (PRMTs) as therapeutic targets. Expert Opinion on Therapeutic Targets, 2012, 16, 651-664.	1.5	46
28	Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Reports, 2018, 51, 143-150.	1.1	46
29	Ectopic Expression of Axin Blocks Neuronal Differentiation of Embryonic Carcinoma P19 Cells. Journal of Biological Chemistry, 2003, 278, 13487-13495.	1.6	45
30	Modulation of \hat{l}^2 -Catenin Phosphorylation/Degradation by Cyclin-dependent Kinase 2. Journal of Biological Chemistry, 2004, 279, 19592-19599.	1.6	42
31	$Gl\pm 12$ and $Gl\pm 13$ Mediate Differentiation of P19 Mouse Embryonal Carcinoma Cells in Response to Retinoic Acid. Journal of Biological Chemistry, 1997, 272, 24461-24467.	1.6	40
32	Adenomatous Polyposis Coli Is Down-regulated by the Ubiquitin-Proteasome Pathway in a Process Facilitated by Axin. Journal of Biological Chemistry, 2004, 279, 49188-49198.	1.6	39
33	Negative feedback regulation of Wnt signaling by $G\hat{l}^2\hat{l}^3$ -mediated reduction of Dishevelled. Experimental and Molecular Medicine, 2009, 41, 695.	3.2	39
34	Interaction of tankyrase and peroxiredoxin II is indispensable for the survival of colorectal cancer cells. Nature Communications, 2017, 8, 40.	5.8	37
35	Role of the Hippo pathway and mechanisms for controlling cellular localization of YAP/TAZ. FEBS Journal, 2022, 289, 5798-5818.	2.2	37
36	Olig2-Induced Neural Stem Cell Differentiation Involves Downregulation of Wnt Signaling and Induction of Dickkopf-1 Expression. PLoS ONE, 2008, 3, e3917.	1.1	36

#	Article	IF	CITATIONS
37	<i>O</i> -GlcNAcylation on LATS2 disrupts the Hippo pathway by inhibiting its activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14259-14269.	3.3	36
38	<i>Xenopus</i> Wntless and the Retromer Complex Cooperate To Regulate XWnt4 Secretion. Molecular and Cellular Biology, 2009, 29, 2118-2128.	1.1	34
39	TAZ/Wnt- \hat{l}^2 -catenin/c-MYC axis regulates cystogenesis in polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29001-29012.	3.3	34
40	Axin localizes to mitotic spindles and centrosomes in mitotic cells. Experimental Cell Research, 2009, 315, 943-954.	1.2	33
41	MAML1/2 promote YAP/TAZ nuclear localization and tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13529-13540.	3 . 3	33
42	Focal Adhesion Kinase Is Negatively Regulated by Phosphorylation at Tyrosine 407. Journal of Biological Chemistry, 2007, 282, 10398-10404.	1.6	30
43	Wnt/ \hat{l}^2 -catenin signaling regulates expression of PRDC, an antagonist of the BMP-4 signaling pathway. Biochemical and Biophysical Research Communications, 2007, 354, 296-301.	1.0	30
44	Smek promotes histone deacetylation to suppress transcription of Wnt target gene brachyury in pluripotent embryonic stem cells. Cell Research, 2011, 21, 911-921.	5 . 7	29
45	Downregulation of Wnt/ \hat{l}^2 -catenin signaling causes degeneration of hippocampal neurons in vivo. Neurobiology of Aging, 2011, 32, 2316.e1-2316.e15.	1.5	28
46	PKC inhibitors RO 31-8220 and $G\tilde{A}\P$ 6983 enhance epinephrine-induced platelet aggregation in catecholamine hypo-responsive platelets by enhancing Akt phosphorylation. BMB Reports, 2011, 44, 140-145.	1.1	28
47	Multiple isoforms of \hat{l}^2 -TrCP display differential activities in the regulation of Wnt signaling. Cellular Signalling, 2009, 21, 43-51.	1.7	26
48	Clinical analysis of spinal stereotactic radiosurgery in the treatment of neurogenic tumors. Journal of Neurosurgery: Spine, 2015, 23, 429-437.	0.9	26
49	Dâ€tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity. Pigment Cell and Melanoma Research, 2018, 31, 374-383.	1.5	26
50	A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Reports, 2019, 52, 577-588.	1.1	26
51	Cyclin-dependent kinase 2 regulates the interaction of Axin with \hat{l}^2 -catenin. Biochemical and Biophysical Research Communications, 2004, 317, 478-483.	1.0	23
52	PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with \hat{l}^2 -catenin-TCF/LEF1. Cell Death and Differentiation, 2021, 28, 2555-2570.	5.0	21
53	Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling. BMB Reports, 2016, 49, 357-358.	1.1	21
54	Dual functions of DP1 promote biphasic Wnt-on and Wnt-off states during anteroposterior neural patterning. EMBO Journal, 2012, 31, 3384-3397.	3.5	20

#	Article	IF	CITATIONS
55	Ubiquitylation and degradation of adenomatous polyposis coli by MKRN1 enhances Wnt/ \hat{l}^2 -catenin signaling. Oncogene, 2018, 37, 4273-4286.	2.6	20
56	Axin-independent phosphorylation of APC controls \hat{l}^2 -catenin signaling via cytoplasmic retention of \hat{l}^2 -catenin. Biochemical and Biophysical Research Communications, 2007, 357, 81-86.	1.0	19
57	Molecular epidemiology of norovirus GII.4 variants in children under 5 years with sporadic acute gastroenteritis in South Korea during 2006–2013. Journal of Clinical Virology, 2014, 61, 340-344.	1.6	18
58	Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Frontiers in Cell and Developmental Biology, 2021, 9, 714330.	1.8	18
59	LGK974 suppresses lipopolysaccharide-induced endotoxemia in mice by modulating the crosstalk between the Wnt/β-catenin and NF-κB pathways. Experimental and Molecular Medicine, 2021, 53, 407-421.	3.2	17
60	Wnt5a Potentiates U46619-Induced Platelet Aggregation via the PI3K/Akt Pathway. Molecules and Cells, 2011, 32, 333-336.	1.0	15
61	Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells. Stem Cells International, 2015, 2015, 1-10.	1.2	15
62	Regulation of Hippo signaling by metabolic pathways in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119201.	1.9	15
63	Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS. Experimental Cell Research, 2005, 308, 18-28.	1.2	14
64	Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex. Neuroscience, 2017, 355, 126-140.	1.1	14
65	TFEB regulates pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy–lysosomal biogenesis. Cell Death and Disease, 2021, 12, 343.	2.7	14
66	Protein Arginine Methyltransferase 1 Methylates Smurf2. Molecules and Cells, 2015, 38, 723-728.	1.0	14
67	Identification of <i>ptpro</i> as a novel target gene of Wnt signaling and its potential role as a receptor for Wnt. FEBS Letters, 2010, 584, 3923-3928.	1.3	13
68	Pja2 Inhibits Wnt/ \hat{l}^2 -catenin Signaling by Reducing the Level of TCF/LEF1. International Journal of Stem Čells, 2018, 11, 242-247.	0.8	12
69	Axin expression enhances herpes simplex virus type 1 replication by inhibiting virus-mediated cell death in L929 cells. Journal of General Virology, 2013, 94, 1636-1646.	1.3	11
70	<scp>LDL</scp> receptorâ€related protein <scp>LRP</scp> 6 senses nutrient levels and regulates Hippo signaling. EMBO Reports, 2020, 21, e50103.	2.0	11
71	Induced expression of the transcription of tropomodulin 1 by Wnt5a and characterization of the tropomodulin 1 promoter. Biochemical and Biophysical Research Communications, 2007, 363, 727-732.	1.0	10
72	Wip1 directly dephosphorylates NLK and increases Wnt activity during germ cell development. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1013-1022.	1.8	10

#	Article	IF	CITATIONS
73	Dual role of YAP: oncoprotein and tumor suppressor. Journal of Thoracic Disease, 2018, 10, S3895-S3898.	0.6	10
74	Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation. Biochemical and Biophysical Research Communications, 2018, 503, 615-620.	1.0	10
75	Enhancement of neuronal differentiation by using small molecules modulating Nodal/Smad, Wnt/ $\hat{\Gamma}^2$ -catenin, and FGF signaling. Biochemical and Biophysical Research Communications, 2018, 503, 352-358.	1.0	10
76	Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer. BMB Reports, 2017, 50, 281-282.	1.1	10
77	Induction of cancer cell-specific death via MMP2 promoterdependent Bax expression. BMB Reports, 2009, 42, 217-222.	1.1	9
78	High prevalence of amantadine-resistant influenza A virus isolated in Gyeonggi Province, South Korea, during 2005–2010. Archives of Virology, 2013, 158, 241-245.	0.9	8
79	Hypermethylation of Mest promoter causes aberrant Wnt signaling in patients with Alzheimer's disease. Scientific Reports, 2021, 11, 20075.	1.6	8
80	Accumulation and Aberrant Modifications of \hat{l}_{\pm} -Crystallins in Anterior Polar Cataracts. Yonsei Medical Journal, 2004, 45, 73.	0.9	7
81	The Distinct Role of Tcfs and Lef1 in the Self-Renewal or Differentiation of Mouse Embryonic Stem Cells. International Journal of Stem Cells, 2020, 13, 192-201.	0.8	5
82	Oseltamivir-resistant influenza viruses isolated in South Korea from 2005 to 2010. Archives of Virology, 2013, 158, 2365-2370.	0.9	3
83	O-GlcNAcylation: An Emerging Protein Modification Regulating the Hippo Pathway. Cancers, 2022, 14, 3013.	1.7	3
84	Hippo signaling: Special issue of BMB Reports in 2018. BMB Reports, 2018, 51, 105-105.	1.1	1
85	Wnt Signal Transduction and Its Involvement in Human Diseases. Journal of Korean Endocrine Society, 2005, 20, 306.	0.1	1
86	Complementary Wnt Sources Regulate Lymphatic Vascular Development Via PROX1-Dependent Wnt/β-Catenin Signaling. SSRN Electronic Journal, 0, , .	0.4	1
87	In vitro NLK Kinase Assay. Bio-protocol, 2017, 7, e2593.	0.2	0