Ehsan Saebnoori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/833682/publications.pdf

Version: 2024-02-01

759233 610901 26 592 12 24 h-index citations g-index papers 26 26 26 742 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The solution plasma synthesis, characterisation, and antibacterial activities of dispersed CuO nanoparticles. Materials Technology, 2022, 37, 1220-1229.	3.0	16
2	Potential role of machine learning techniques for modeling the hardness of OPH steels. Materials Today Communications, 2021, 26, 101806.	1.9	9
3	Novel synthesis of nickel ferrite magnetic nanoparticles by an inâ€liquid plasma. Journal of Materials Science: Materials in Electronics, 2021, 32, 10424-10442.	2.2	10
4	Development of Machine Learning Models to Evaluate the Toughness of OPH Alloys. Materials, 2021, 14, 6713.	2.9	3
5	Hybrid Machine Learning Techniques and Computational Mechanics: Estimating the Dynamic Behavior of Oxide Precipitation Hardened Steel. IEEE Access, 2021, 9, 156930-156946.	4.2	22
6	Surface Pretreatments of AA5083 Aluminum Alloy with Enhanced Corrosion Protection for Cerium-Based Conversion Coatings Application: Combined Experimental and Computational Analysis. Molecules, 2021, 26, 7413.	3.8	3
7	The Effect of Heat Treatment on the Tribological Properties and Room Temperature Corrosion Behavior of Fe–Cr–Al-Based OPH Alloy. Materials, 2020, 13, 5465.	2.9	5
8	High Temperature and Corrosion Properties of A Newly Developed Fe-Al-O Based OPH Alloy. Metals, 2020, 10, 167.	2.3	6
9	Assessing the Efficiency of Sodium Ferrate Production by Solution Plasma Process. Plasma Chemistry and Plasma Processing, 2019, 39, 769-786.	2.4	9
10	Comparing Morphology and Corrosion Behavior of Nanostructured Coatings Obtained via Plasma Electrolytic Oxidation with Direct and Pulse Currents on Commercial Titanium Substrate. Surface Engineering and Applied Electrochemistry, 2019, 55, 667-678.	0.8	3
11	In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surface and Coatings Technology, 2018, 334, 450-460.	4.8	101
12	Chryseobacterium indologenes MUT.2 bacterial biopolymer as a novel green inhibitor protecting carbon steel corrosion in acidic solution. Journal of Environmental Chemical Engineering, 2018, 6, 4698-4705.	6.7	10
13	Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surface and Coatings Technology, 2017, 321, 171-179.	4.8	103
14	Investigation in effect of different culture medium on the anti-corrosive performance of bacterial biopolymer. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 64-72.	5. 3	5
15	Microstructure, deposition mechanism and corrosion behavior of nanostructured cerium oxide conversion coating modified with chitosan on AA2024 aluminum alloy. Journal of Alloys and Compounds, 2017, 725, 968-975.	5.5	53
16	Surface characteristics and electrochemical behaviour of sputter-deposited NiTi thin film. Philosophical Magazine, 2015, 95, 1696-1716.	1.6	10
17	Complexes of Imidazole with Poly(ethylene glycol) as a Corrosion Inhibitor for Carbon Steel in Sulphuric Acid. Journal of Materials Engineering and Performance, 2015, 24, 4696-4709.	2.5	14
18	Changes in the resistance to corrosion of thermally passivated titanium aluminide during exposure to sodium chloride solution. Research on Chemical Intermediates, 2015, 41, 1079-1095.	2.7	5

#	Article	IF	CITATIONS
19	A Study on the Passivation Behavior and Semiconducting Properties of Gamma Titanium Aluminide in 0.1ÂN H2SO4, HNO3, and HClO4 Acidic Solutions. Journal of Materials Engineering and Performance, 2014, 23, 912-917.	2.5	7
20	Corrosion resistance enhancement of Ti–47Al–2Cr by thermal treatment in a controlled atmosphere. Anti-Corrosion Methods and Materials, 2012, 59, 51-56.	1.5	4
21	Electrochemical impedance spectroscopy analysis of X70 pipeline steel stress corrosion cracking in high pH carbonate solution. Corrosion Science, 2012, 61, 111-122.	6.6	70
22	Fabrication of porous NiTi alloy via powder metallurgy and its mechanical characterization by shear punch method. Russian Journal of Non-Ferrous Metals, 2012, 53, 169-175.	0.6	14
23	Processing and surface properties of Al–AlN composites produced from nanostructured milled powders. Journal of Alloys and Compounds, 2010, 490, 624-630.	5.5	25
24	Effect of rare earth elements addition on thermal fatigue behaviors of AZ91 magnesium alloy. Journal of Rare Earths, 2009, 27, 255-258.	4.8	49
25	Investigation of heat-treatment and pre-treatment on microstructure and electrochemical properties of cerium nano-oxide films on AA7020-T6 by sol–gel methods. Applied Surface Science, 2008, 254, 5683-5690.	6.1	17
26	Extremely high pitting resistance of NiTi shape memory alloy thin film in simulated body fluids. Materials Letters, 2008, 62, 2791-2794.	2.6	19