## Stefania Pagliari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336685/publications.pdf Version: 2024-02-01



STEEANIA PACHARI

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cellular Mechanotransduction: From Tension to Function. Frontiers in Physiology, 2018, 9, 824.                                                                                                   | 1.3  | 594       |
| 2  | YAP regulates cell mechanics by controlling focal adhesion assembly. Nature Communications, 2017, 8, 15321.                                                                                      | 5.8  | 431       |
| 3  | Cerium Oxide Nanoparticles Protect Cardiac Progenitor Cells from Oxidative Stress. ACS Nano, 2012,<br>6, 3767-3775.                                                                              | 7.3  | 314       |
| 4  | Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning.<br>Acta Biomaterialia, 2010, 6, 1227-1237.                                                    | 4.1  | 197       |
| 5  | Stem Cell Aligned Growth Induced by CeO <sub>2</sub> Nanoparticles in PLGA Scaffolds with<br>Improved Bioactivity for Regenerative Medicine. Advanced Functional Materials, 2010, 20, 1617-1624. | 7.8  | 168       |
| 6  | Hippo Pathway Effectors Control Cardiac Progenitor Cell Fate by Acting as Dynamic Sensors of Substrate Mechanics and Nanostructure. ACS Nano, 2014, 8, 2033-2047.                                | 7.3  | 127       |
| 7  | Criticality of the Biological and Physical Stimuli Array Inducing Resident Cardiac Stem Cell<br>Determination. Stem Cells, 2008, 26, 2093-2103.                                                  | 1.4  | 98        |
| 8  | Substrate Stiffness Modulates Gene Expression and Phenotype in Neonatal Cardiomyocytes <i>In<br/>Vitro</i> . Tissue Engineering - Part A, 2012, 18, 1837-1848.                                   | 1.6  | 88        |
| 9  | Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart. Circulation Research, 2021, 128, 24-38.                                                                             | 2.0  | 60        |
| 10 | Human Cardiac Progenitor Cell Grafts as Unrestricted Source of Supernumerary Cardiac Cells in<br>Healthy Murine Hearts. Stem Cells, 2011, 29, 2051-2061.                                         | 1.4  | 49        |
| 11 | Substrate stiffness affects skeletal myoblast differentiation <i>in vitro</i> . Science and Technology of Advanced Materials, 2012, 13, 064211.                                                  | 2.8  | 43        |
| 12 | Cooperation of Biological and Mechanical Signals in Cardiac Progenitor Cell Differentiation.<br>Advanced Materials, 2011, 23, 514-518.                                                           | 11.1 | 34        |
| 13 | YAP–TEAD1 control of cytoskeleton dynamics and intracellular tension guides human pluripotent stem cell mesoderm specification. Cell Death and Differentiation, 2021, 28, 1193-1207.             | 5.0  | 33        |
| 14 | Thick Soft Tissue Reconstruction on Highly Perfusive Biodegradable Scaffolds. Macromolecular<br>Bioscience, 2010, 10, 127-138.                                                                   | 2.1  | 27        |
| 15 | Biomaterial and implant induced ossification: in vitro and in vivo findings. Journal of Tissue<br>Engineering and Regenerative Medicine, 2020, 14, 1157-1168.                                    | 1.3  | 26        |
| 16 | A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem sells,<br>dynamic cell cultures, and porous scaffolds. Frontiers in Physiology, 2014, 5, 210.       | 1.3  | 23        |
| 17 | Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness. Science and<br>Technology of Advanced Materials, 2012, 13, 064205.                                    | 2.8  | 20        |
| 18 | Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases.<br>Genomics, 2021, 113, 1349-1365.                                                           | 1.3  | 14        |

STEFANIA PAGLIARI

| #  | ARTICLE                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Towards the Generation of Patient-Specific Patches for Cardiac Repair. Stem Cell Reviews and Reports, 2013, 9, 313-325.                                                                         | 5.6 | 13        |
| 20 | Stable Phenotype and Function of Immortalized Linâ^'Sca-1+ Cardiac Progenitor Cells in Long-Term<br>Culture: A Step Closer to Standardization. Stem Cells and Development, 2014, 23, 1012-1026. | 1.1 | 13        |
| 21 | Adult Stem Cells and Biocompatible Scaffolds as Smart Drug Delivery Tools for Cardiac Tissue Repair.<br>Current Medicinal Chemistry, 2013, 20, 3429-3447.                                       | 1.2 | 11        |
| 22 | Self-Renewal and Multipotency Coexist in a Long-Term Cultured Adult Rat Dental Pulp Stem Cell Line:<br>An Exception to the Rule?. Stem Cells and Development, 2012, 21, 3278-3288.              | 1.1 | 10        |
| 23 | Tumor in 3D: In Vitro Complex Cellular Models to Improve Nanodrugs Cancer Therapy. Current<br>Medicinal Chemistry, 2020, 27, 7234-7255.                                                         | 1.2 | 7         |
| 24 | Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function.<br>Frontiers in Physiology, 2014, 5, 219.                                                        | 1.3 | 4         |