Fabrice Goubard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conducting polymer nanostructures for photocatalysis under visible light. Nature Materials, 2015, 14, 505-511.	27.5	575
2	Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs). Beilstein Journal of Organic Chemistry, 2018, 14, 282-308.	2.2	159
3	Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Applied Catalysis B: Environmental, 2019, 242, 284-292.	20.2	133
4	Truxene: a promising scaffold for future materials. RSC Advances, 2015, 5, 3521-3551.	3.6	118
5	Carbazole Derivatives with Thermally Activated Delayed Fluorescence Property as Photoinitiators/Photoredox Catalysts for LED 3D Printing Technology. Macromolecules, 2017, 50, 4913-4926.	4.8	100
6	Visible-light active conducting polymer nanostructures with superior photocatalytic activity. Scientific Reports, 2016, 5, 18002.	3.3	96
7	Processable Star-Shaped Molecules with Triphenylamine Core as Hole-Transporting Materials: Experimental and Theoretical Approach. Journal of Physical Chemistry C, 2012, 116, 3765-3772.	3.1	95
8	Stretchable and Transparent Conductive PEDOT:PSSâ€Based Electrodes for Organic Photovoltaics and Strain Sensors Applications. Advanced Functional Materials, 2020, 30, 2001251.	14.9	88
9	Azahelicenes as visible light photoinitiators for cationic and radical polymerization: Preparation of photoluminescent polymers and use in high performance LED projector 3D printing resins. Journal of Polymer Science Part A, 2017, 55, 1189-1199.	2.3	82
10	Panchromatic Photopolymerizable Cationic Films Using Indoline and Squaraine Dye Based Photoinitiating Systems. ACS Macro Letters, 2013, 2, 736-740.	4.8	81
11	Conducting and Stretchable PEDOT:PSS Electrodes: Role of Additives on Self-Assembly, Morphology, and Transport. ACS Applied Materials & Interfaces, 2019, 11, 17570-17582.	8.0	72
12	lridium(iii) soft salts from dinuclear cationic and mononuclear anionic complexes for OLED devices. Chemical Communications, 2011, 47, 10698.	4.1	70
13	PEDOT nanostructures synthesized in hexagonal mesophases. New Journal of Chemistry, 2014, 38, 1106-1115.	2.8	69
14	Highly active poly(3-hexylthiophene) nanostructures for photocatalysis under solar light. Applied Catalysis B: Environmental, 2017, 209, 23-32.	20.2	67
15	Phenothiazine derivatives as photoredox catalysts for cationic and radical photosensitive resins for 3D printing technology and photocomposite synthesis. Polymer Chemistry, 2019, 10, 6145-6156.	3.9	65
16	Capturing Mobile Lithium Ions in a Molecular Hole Transporter Enhances the Thermal Stability of Perovskite Solar Cells. Advanced Materials, 2021, 33, e2007431.	21.0	64
17	Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing. Molecules, 2017, 22, 2143.	3.8	60
18	Acridone derivatives as high performance visible light photoinitiators for cationic and radical photosensitive resins for 3D printing technology and for low migration photopolymer property. Polymer, 2018, 159, 47-58.	3.8	60

#	Article	IF	CITATIONS
19	Development of new highâ€performance visible light photoinitiators based on carbazole scaffold and their applications in 3d printing and photocomposite synthesis. Journal of Polymer Science Part A, 2019, 57, 2081-2092.	2.3	59
20	Molecular <i>versus</i> polymeric hole transporting materials for perovskite solar cell application. Journal of Materials Chemistry A, 2018, 6, 13350-13358.	10.3	53
21	Thermally Activated Delayed Fluorescence Emitters for Deep Blue Organic Light Emitting Diodes: A Review of Recent Advances. Applied Sciences (Switzerland), 2018, 8, 494.	2.5	51
22	Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. Advanced Materials, 2021, 33, e2101469.	21.0	51
23	Low-cost zinc complexes for white organic light-emitting devices. Thin Solid Films, 2014, 564, 351-360.	1.8	50
24	Triphenylamines and 1,3,4-oxadiazoles: a versatile combination for controlling the charge balance in organic electronics. New Journal of Chemistry, 2014, 38, 2204.	2.8	47
25	Urea-Induced Sequential Unfolding of Fibronectin:  A Fluorescence Spectroscopy and Circular Dichroism Study. Biochemistry, 2004, 43, 1724-1735.	2.5	38
26	Functionalization of Luminescent Aminated Particles for Facile Bioconjugation. ACS Nano, 2008, 2, 2273-2282.	14.6	36
27	Ternary blends for polymer bulk heterojunction solar cells. Polymer International, 2014, 63, 1362-1367.	3.1	32
28	Solution-processed blue phosphorescent OLEDs with carbazole-based polymeric host materials. Organic Electronics, 2015, 25, 21-30.	2.6	32
29	Design of new phenothiazine derivatives as visible light photoinitiators. Polymer Chemistry, 2020, 11, 3349-3359.	3.9	32
30	Carbazoleâ€Based Molecular Glasses as Holeâ€Transporting Materials in Solid State Dyeâ€Sensitized Solar Cells. ChemNanoMat, 2015, 1, 203-210.	2.8	31
31	Conducting polymer nanofibers with controlled diameters synthesized in hexagonal mesophases. New Journal of Chemistry, 2015, 39, 8311-8320.	2.8	31
32	TiO ₂ Nanocrystals Synthesized by Laser Pyrolysis for the Upâ€Scaling of Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2011, 1, 908-916.	19.5	29
33	A novel class of photoinitiators with a thermally activated delayed fluorescence (TADF) property. New Journal of Chemistry, 2018, 42, 8261-8270.	2.8	29
34	Title is missing!. Structural Chemistry, 2003, 14, 257-262.	2.0	27
35	Carbazol-N-yl and diphenylamino end-capped triphenylamine-based molecular glasses: synthesis, thermal, and optical properties. Tetrahedron Letters, 2013, 54, 4277-4280.	1.4	26
36	Radiation-induced reduction–polymerization route for the synthesis of PEDOT conducting polymers. Radiation Physics and Chemistry, 2016, 119, 157-166.	2.8	25

#	Article	IF	CITATIONS
37	Donor–acceptor–donor structured thioxanthone derivatives as visible photoinitiators. Polymer Chemistry, 2020, 11, 7221-7234.	3.9	25
38	Effect of permodified β-cyclodextrin on the photophysical properties of poly[2,7-(9,9-dioctylfluorene)- <i>alt</i> -(5,5′-bithiophene)] main chain polyrotaxanes. Journal of Polymer Science Part A, 2014, 52, 460-471.	2.3	24
39	Triphenylamine–Thienothiophene Organic Chargeâ€Transport Molecular Materials: Effect of Substitution Pattern on their Thermal, Photoelectrochemical, and Photovoltaic Properties. Chemistry - an Asian Journal, 2018, 13, 1302-1311.	3.3	24
40	On the Lanthanide Ferrocyanides KLnFe(II)(CN)6·xH2O (Ln=La–Lu): Characterization and Thermal Evolution. Journal of Solid State Chemistry, 2002, 167, 34-40.	2.9	23
41	In vitro denaturation–renaturation of fibronectin. Formation of multimers disulfide-linked and shuffling of intramolecular disulfide bonds. International Journal of Biochemistry and Cell Biology, 2006, 38, 1547-1560.	2.8	23
42	Thermal ageing of poly(ethylene oxide)/poly(3,4-ethylenedioxythiophene) semi-IPNs. European Polymer Journal, 2008, 44, 3864-3870.	5.4	21
43	Fast and reversible photo-responsive wettability on TiO ₂ based hybrid surfaces. Journal of Materials Chemistry A, 2015, 3, 11533-11542.	10.3	21
44	Recent advances in small molecular, non-polymeric organic hole transporting materials for solid-state DSSC. EPJ Photovoltaics, 2013, 4, 40402.	1.6	20
45	A novel radiation chemistry-based methodology for the synthesis of PEDOT/Ag nanocomposites. Materials Chemistry Frontiers, 2017, 1, 879-892.	5.9	20
46	Impact of Organic Hole Transporting Material and Doping on the Electrical Response of Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 11651-11658.	3.1	20
47	Role of LiTFSI in high T _g triphenylamine-based hole transporting material in perovskite solar cell. RSC Advances, 2016, 6, 68553-68559.	3.6	19
48	Poly(2-(N-carbazolyl)ethyl acrylate) as a host for high efficiency polymer light-emitting devices. Organic Electronics, 2015, 17, 377-385.	2.6	17
49	First insights on the mineral composition of "stucco―devotional reliefs from Italian Renaissance Masters: investigating technological practices and raw material sourcing. Journal of Cultural Heritage, 2018, 34, 23-32.	3.3	17
50	Di(p-methoxyphenyl)amine end-capped tri(p-thiophenylphenyl)amine based molecular glasses as hole transporting materials for solid-state dye-sensitized solar cells. RSC Advances, 2015, 5, 49590-49597.	3.6	16
51	Design of dendritic core carbazole-based hole transporting materials for efficient and stable hybrid perovskite solar cells. Organic Electronics, 2018, 60, 22-30.	2.6	16
52	Elaboration of nanohybrid materials by photopolymerisation of 3,4-ethylenedioxythiophene on TiO2. Chemical Communications, 2008, , 3139.	4.1	15
53	Poly(3,4-ethylenedioxythiophene/permethylated β-cyclodextrin) polypseudorotaxane and polyrotaxane: Synthesis, characterization and application as hole transporting materials in perovskite solar cells. European Polymer Journal, 2018, 105, 250-256.	5.4	13
54	Macroscopic reflectance spectral imaging to reveal multiple and complementary types of information for the non-invasive study of an entire polychromatic manuscript. Journal of Cultural Heritage, 2019, 35, 1-15.	3.3	13

#	Article	IF	CITATIONS
55	Hole transporting materials for perovskite solar cells: molecular versus polymeric carbazole-based derivatives. Journal of Materials Science, 2020, 55, 4820-4829.	3.7	13
56	A Ladderâ€like Dopantâ€free Holeâ€Transporting Polymer for Hysteresisâ€less Highâ€Efficiency Perovskite Solar Cells with High Ambient Stability. ChemSusChem, 2020, 13, 5058-5066.	6.8	12
57	Simple 3,6-bis(diphenylaminyl)carbazole molecular glasses as hole transporting materials for hybrid perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 17551-17556.	2.2	11
58	Independent macroscopic chemical mappings of cultural heritage materials with reflectance imaging spectroscopy: case study of a 16 th century Aztec manuscript. Analytical Methods, 2017, 9, 5997-6008.	2.7	11
59	Conducting polymers synthesized by γ-radiolysis in very acidic aqueous medium. Radiation Physics and Chemistry, 2019, 159, 47-56.	2.8	11
60	Versatile methods for improving the mechanical properties of fullerene and non-fullerene bulk heterojunction layers to enable stretchable organic solar cells. Journal of Materials Chemistry C, 2022, 10, 3375-3386.	5.5	10
61	Labeling of fibronectin by fluorescent and paramagnetic nanoprobes for exploring the extracellular matrix: bioconjugate synthesis optimization and biochemical characterization. Analytical and Bioanalytical Chemistry, 2011, 399, 1653-1663.	3.7	9
62	A star-shaped molecule as hole transporting material in solution-processed thin-film transistors. Synthetic Metals, 2013, 184, 35-40.	3.9	9
63	Humidity Sensing Applications of Lead-Free Halide Perovskite Nanomaterials. Materials, 2022, 15, 4146.	2.9	9
64	Characterization limits of a polymer adsorbed under a monolayer by GIXD measurements. Journal of Colloid and Interface Science, 2007, 306, 82-88.	9.4	8
65	Solid state dye-sensitized solar cells based on polymeric ionic liquid with free imidazolium cation. Electronic Materials Letters, 2014, 10, 209-212.	2.2	8
66	Electrochromic behavior of drop-casted thin films combining a semi-conducting polymer mixed with a Keggin-type polyoxometalate. Materials Chemistry and Physics, 2018, 211, 312-320.	4.0	8
67	Role of cyano substituents on thiophene vinylene benzothiadiazole conjugated polymers and application as hole transporting materials in perovskite solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 238-247.	3.9	8
68	Bis(diphenylamino)naphthalene host materials: careful selection of the substitution pattern for the design of fully solution-processed triple-layered electroluminescent devices. RSC Advances, 2016, 6, 60565-60577.	3.6	7
69	Characterizing the Intrinsic Fluorescence Properties of Historical Painting Materials: The Case Study of a Sixteenth-Century Mesoamerican Manuscript. Applied Spectroscopy, 2018, 72, 573-583.	2.2	7
70	AB5-type intermetallic compound as a substrate for nickel hexacyanoferrate modified electrodes. Sensors and Actuators B: Chemical, 2004, 99, 516-524.	7.8	6
71	Carrier transport study on triphenylamine-thienothiophene-based hole transport material by MIS-CELIV method. Japanese Journal of Applied Physics, 2020, 59, SGGG01.	1.5	4
72	Carbazole-based material: synthesis, characterization, and application as hole transporting material in perovskite solar cells. Journal of Materials Science: Materials in Electronics, 2021, 32, 12856-12861.	2.2	4

#	Article	IF	CITATIONS
73	Radiation-induced polymerization of 3-hexylthiophene in oxygen-free and oxygen-saturated dichloromethane solvent. Radiation Physics and Chemistry, 2021, 180, 109291.	2.8	4
74	Powder diffraction data for fluorocomplexes of niobium IV: MNbF6 (M=Ca, Mg, Cd, Zn). Powder Diffraction, 1998, 13, 163-165.	0.2	3
75	Carbazole Electroactive Amorphous Molecular Material: Molecular Design, Synthesis, Characterization and Application in Perovskite Solar Cells. Energies, 2020, 13, 2897.	3.1	3
76	Gamma rays as an innovative tool for synthesizing conducting copolymers with improved properties. New Journal of Chemistry, 2021, 45, 13142-13157.	2.8	3
77	Synthesis, Thermal, Optical and Electrochemical Properties of Acridone and Thioxanthone Based Pushâ€Pull Molecules. ChemistrySelect, 2020, 5, 15180-15189.	1.5	3
78	Triphenylamine/oxadiazole hybrids differing by the substitution pattern: Influence on the electroluminescence properties of yellow and green emitting diodes. Synthetic Metals, 2018, 240, 21-29.	3.9	1
79	Powder diffraction data for niobium IV hexafluorides: VNbF6 and CrNbF6. Powder Diffraction, 1998, 13, 132-133.	0.2	0
80	Synthesis and X-ray powder diffraction data for MNbF6 (M=Fe, Co) compounds. Powder Diffraction, 1998, 13, 134-135.	0.2	0
81	Asymmetric Pentacenes for Solution-Processed Organic Field-Effect Transistors. Current Smart Materials, 2017, 2, .	0.5	0
82	Multi-analytical approach for the compositional and micro-structural study of Florentine Masters stucco devotional reliefs. Techne, 2021, , 48-63.	0.1	0