Fereshteh Karamali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated stem cells from apical papilla in a 3D culture system improve human embryonic stem cell derived retinal organoid formation. Life Sciences, 2022, 291, 120273.	2.0	3
2	The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2022, 18, 1789-1808.	1.7	5
3	Monitoring the induction of ferroptosis following dissociation in human embryonic stem cells. Journal of Biological Chemistry, 2022, 298, 101855.	1.6	7
4	Scaffold free retinal pigment epithelium sheet engineering using modified alginate-RGD hydrogel. Journal of Bioscience and Bioengineering, 2022, 133, 579-586.	1.1	5
5	Characterization of The Retinal Progenitor Cells Generated Using Co-Culture Systems Cell Journal, 2022, 24, 127-132.	0.2	0
6	Potential neuroprotective effect of stem cells from apical papilla derived extracellular vesicles enriched by lab-on-chip approach during retinal degeneration. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	4
7	A nano approach towards the creation of a biointerface as stimulator of osteogenic differentiation. Materials Science and Engineering C, 2021, 120, 111746.	3.8	4
8	The role of PGS/PCL scaffolds in promoting differentiation of human embryonic stem cells into retinal ganglion cells. Acta Biomaterialia, 2021, 126, 238-248.	4.1	14
9	AC electrokinetic isolation and detection of extracellular vesicles from dental pulp stem cells: Theoretical simulation incorporating fluid mechanics. Electrophoresis, 2021, 42, 2018-2026.	1.3	2
10	Construction and characterization of EGFP reporter plasmid harboring putative human RAX promoter for in vitro monitoring of retinal progenitor cells identity. BMC Molecular and Cell Biology, 2021, 22, 40.	1.0	2
11	<p>ZIF-8 Modified Polypropylene Membrane: A Biomimetic Cell Culture Platform with a View to the Improvement of Guided Bone Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 10029-10043.	3.3	26
12	Hepatocyte growth factor promotes the proliferation of human embryonic stem cell derived retinal pigment epithelial cells. Journal of Cellular Physiology, 2019, 234, 4256-4266.	2.0	8
13	Stem cells from apical papilla promote differentiation of human pluripotent stem cells towards retinal cells. Differentiation, 2018, 101, 8-15.	1.0	16
14	Switchable phase transition behavior of thermoresponsive substrates for cell sheet engineering. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1567-1576.	2.4	15
15	A proper protocol for isolation of retinal pigment epithelium from rabbit eyes. Advanced Biomedical Research, 2014, 3, 4.	0.2	3
16	Core–shell nanofibers of poly (glycerol sebacate) and poly (1,8 octanediol citrate) for retinal regeneration. Polymer Bulletin, 0, , 1.	1.7	1