
MaÅ,gorzata Werner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application and evaluation of the WRF model for high-resolution forecasting of rainfall - a case study of SW Poland. Meteorologische Zeitschrift, 2013, 22, 595-601.	1.0	37
2	Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environmental Pollution, 2019, 254, 112948.	7.5	36
3	High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation for the 1981–2010 Period. Pure and Applied Geophysics, 2017, 174, 511-526.	1.9	31
4	Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. Science of the Total Environment, 2014, 479-480, 171-180.	8.0	27
5	The role of annual circulation and precipitation on national scale deposition of atmospheric sulphur and nitrogen compounds. Journal of Environmental Management, 2012, 109, 70-79.	7.8	26
6	Source regions of ragweed pollen arriving in south-western Poland and the influence of meteorological data on the HYSPLIT model results. Aerobiologia, 2017, 33, 315-326.	1.7	22
7	Assimilation of PM2.5 ground base observations to two chemical schemes in WRF-Chem – The results for the winter and summer period. Atmospheric Environment, 2019, 200, 178-189.	4.1	21
8	The Effect of Emission from Coal Combustion in Nonindustrial Sources on Deposition of Sulfur and Oxidized Nitrogen in Poland. Journal of the Air and Waste Management Association, 2010, 60, 856-866.	1.9	20
9	High resolution application of the EMEP MSC-W model over Eastern Europe – Analysis of the EMEP4PL results. Atmospheric Research, 2018, 212, 6-22.	4.1	20
10	The role of precursor emissions on ground level ozone concentration during summer season in Poland. Journal of Atmospheric Chemistry, 2018, 75, 181-204.	3.2	19
11	Differences in the Spatial Distribution and Chemical Composition of PM10 Between the UK and Poland. Environmental Modeling and Assessment, 2014, 19, 179-192.	2.2	18
12	Footprint areas of pollen from alder (Alnus) and birch (Betula) in the UK (Worcester) and Poland (WrocÅ,aw) during 2005–2014. Acta Agrobotanica, 2015, 68, 315-323.	1.0	18
13	Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theoretical and Applied Climatology, 2015, 122, 207-218.	2.8	17
14	Can Data Assimilation of Surface PM2.5 and Satellite AOD Improve WRF-Chem Forecasting? A Case Study for Two Scenarios of Particulate Air Pollution Episodes in Poland. Remote Sensing, 2019, 11, 2364.	4.0	16
15	Application of WRF-Chem to forecasting PM _{10 concentration over Poland. International Journal of Environment and Pollution, 2015, 58, 280.}	0.2	14
16	High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 2: Model Performance with Respect to Automatically Derived Circulation Types. Pure and Applied Geophysics, 2017, 174, 527-550.	1.9	13
17	The influence of atmospheric circulation conditions on Betula and Alnus pollen concentrations in WrocÅ,aw, Poland. Aerobiologia, 2020, 36, 261-276.	1.7	13
18	Are estimates of wind characteristics based on measurements with Pitot tubes and GNSS receivers mounted on consumer-grade unmanned aerial vehicles applicable in meteorological studies?. Environmental Monitoring and Assessment, 2017, 189, 431.	2.7	12

MaÅ,gorzata Werner

#	Article	IF	CITATIONS
19	The variability of pollen concentrations at two stations in the city of WrocÅ,aw in Poland. Aerobiologia, 2019, 35, 421-439.	1.7	12
20	Modelling meteorological conditions for the episode (December 2009) of measured high PM <sub align="right">10 air concentrations in SW Poland - application of the WRF model. International Journal of Environment and Pollution, 2012, 50, 41.</sub 	0.2	11
21	Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland. Pure and Applied Geophysics, 2017, 174, 551-568.	1.9	11
22	Sensitivity Study of Cloud Cover and Ozone Modeling to Microphysics Parameterization. Pure and Applied Geophysics, 2017, 174, 491-510.	1.9	10
23	The Effect of Emission Inventory on Modelling of Seasonal Exposure Metrics of Particulate Matter and Ozone with the WRF-Chem Model for Poland. Sustainability, 2020, 12, 5414.	3.2	10
24	Understanding emissions of ammonia from buildings and the application of fertilizers: an example from Poland. Biogeosciences, 2015, 12, 3623-3638.	3.3	9
25	Evaluation of the WRF meteorological model results during a high ozone episode in SW Poland - the role of model initial conditions. International Journal of Environment and Pollution, 2014, 54, 193.	0.2	8
26	A Decade of Poland-AOD Aerosol Research Network Observations. Atmosphere, 2021, 12, 1583.	2.3	8
27	Comparison of the WRF and Sodar derived planetary boundary layer height. International Journal of Environment and Pollution, 2015, 58, 3.	0.2	6
28	Extension of WRF-Chem for birch pollen modelling—a case study for Poland. International Journal of Biometeorology, 2021, 65, 513-526.	3.0	6
29	Air Pollution Affecting Pollen Concentrations through Radiative Feedback in the Atmosphere. Atmosphere, 2021, 12, 1376.	2.3	6
30	Modelling emission, concentration and deposition of sodium for Poland. International Journal of Environment and Pollution, 2012, 50, 164.	0.2	5
31	Ammonia Concentrations Over Europe – Application of the WRF-Chem Model Supported with Dynamic Emission. Polish Journal of Environmental Studies, 2017, 26, 1323-1341.	1.2	5
32	Calculation of Sulphur and Nitrogen Deposition with the Frame Model and Assessment of the Exceedance of Critical Loads in Poland. Ecological Chemistry and Engineering S, 2013, 20, 279-290.	1.5	5
33	Application of a land - use regression model for calculation of the spatial pattern of annual NOx air concentrations at national scale: A case study for Poland. Procedia Environmental Sciences, 2011, 7, 98-103.	1.4	4
34	A Sensitivity Analysis of the WRF Model to Shortwave Radiation Schemes for Air Quality Purposes and Evaluation with Observational Data. Springer Proceedings in Complexity, 2014, , 539-543.	0.3	3
35	Estimating Health Impacts Due to the Reduction of Particulate Air Pollution from the Household Sector Expected under Various Scenarios. Applied Sciences (Switzerland), 2021, 11, 272.	2.5	3
36	Comparison and evaluation of the 1 km and 5 km resolution FRAME modelled annual concentrations of nitrogen oxides. International Journal of Environment and Pollution, 2012, 50, 53.	0.2	2

MaÅ,gorzata Werner

#	Article	IF	CITATIONS
37	The uncertainty in modelled air concentrations of NO _{x due to choice of emission inventory. International Journal of Environment and Pollution, 2015, 57, 123.}	0.2	2
38	Spatial and chemical patterns of PM2.5 - differences between a maritime and an inland country. Ecological Chemistry and Engineering S, 2016, 23, 61-69.	1.5	2
39	Application of degree-day factors for residential emission estimate and air quality forecasting. International Journal of Environment and Pollution, 2019, 65, 325.	0.2	2
40	Emission projections and limit values of air pollution concentration - a case study using the EMEP4PL model. International Journal of Environment and Pollution, 2019, 65, 164.	0.2	2
41	High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 1: Model Configuration and Statistical Evaluation for the 1981–2010 Period. , 2018, , 53-68.		2
42	Application of the HYSPLIT model for birch pollen modelling in Poland. Aerobiologia, 2022, 38, 103-121.	1.7	2
43	Mean annual population exposure to atmospheric particulate matter in Poland. International Journal of Environment and Pollution, 2015, 58, 89.	0.2	1
44	Modelling the Concentration and Deposition of Heavy Metals in the UK. Springer Proceedings in Complexity, 2014, , 223-227.	0.3	1
45	Changes in Sulphur and Nitrogen Deposition in Poland due to Domestic and European Emission Abatement. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 279-283.	0.2	1
46	Modelling the Emission, Air Concentration and Deposition of Heavy Metals in Poland. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 407-412.	0.2	1
47	The impact of data assimilation into the meteorological WRF model on birch pollen modelling. Science of the Total Environment, 2022, 807, 151028.	8.0	1
48	Application of the WRF-Chem Model for Air Pollution Forecasting in Poland. Springer Proceedings in Complexity, 2016, , 351-356.	0.3	1
49	Comparison of spatial rainfall data calculated with a meteorological model and from interpolation of measurements - implications for FRAME modelled wet deposition. International Journal of Environment and Pollution, 2014, 55, 201.	0.2	0
50	Modelling the Atmospheric Concentration and Deposition of Pb and Cd in the UK. Springer Proceedings in Complexity, 2018, , 381-385.	0.3	0
51	Application of the 1 km × 1 km Resolution FRAME Model to Poland for the Assessment of Ammonia and Ammonium Concentrations and Exceedance of Critical Levels. NATO Science for Peace and Security Series C: Environmental Security, 2014, , 95-99.	0.2	0
52	Application and Evaluation of the High-Resolution Regional Scale FRAME Model for Calculation of Ammonia and Ammonium Air Concentrations for Poland for the Years 2002–2008. Springer Proceedings in Complexity, 2014, , 311-315.	0.3	0
53	The Impact of Transboundary Transport of Air Pollutants on Air Quality in the United Kingdom and Poland. Springer Proceedings in Complexity, 2014, , 323-327.	0.3	0
54	Using a Dynamical Approach for Implementing Ammonia Emissions into WRF-Chem Over Europe. Springer Proceedings in Complexity, 2016, , 345-350.	0.3	0

#	Article	IF	CITATIONS
55	Recent and Future Changes in Nitrogen and Sulphur Emission, Deposition and the Exceedance of Critical Loads for the Region of South-West Poland and Eastern Saxony. Springer Proceedings in Complexity, 2016, , 167-171.	0.3	Ο
56	Can Assimilation of Ground Particulate Matter Observations Improve Air Pollution Forecasts for Highly Polluted Area of Europe?. Springer Proceedings in Complexity, 2020, , 267-271.	0.3	0
57	Assimilation of Meteorological Data in Online Integrated Atmospheric Transport Model—Example of Air Quality Forecasts for Poland. Springer Proceedings in Complexity, 2020, , 273-278.	0.3	Ο