Bertrand Philippe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8336054/publications.pdf

Version: 2024-02-01

42 papers

7,816 citations

147801 31 h-index 276875 41 g-index

44 all docs

44 docs citations

44 times ranked 12042 citing authors

#	Article	IF	CITATIONS
1	Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature, 2018, 555, 497-501.	27.8	1,336
2	Bismuth Based Hybrid Perovskites A ₃ Bi ₂ I ₉ (A: Methylammonium or) Tj E	TQq0,00 i	gBT/Oyerlock
3	Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016, 7, 11981.	12.8	808
4	Unreacted Pbl ₂ as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 10331-10343.	13.7	696
5	Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chemistry of Materials, 2015, 27, 2591-2599.	6.7	494
6	Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy. Chemistry of Materials, 2012, 24, 1107-1115.	6.7	445
7	Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation. Chemistry of Materials, 2015, 27, 1720-1731.	6.7	388
8	Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study. Journal of the American Chemical Society, 2013, 135, 9829-9842.	13.7	275
9	Role of the LiPF ₆ Salt for the Long-Term Stability of Silicon Electrodes in Li-lon Batteries – A Photoelectron Spectroscopy Study. Chemistry of Materials, 2013, 25, 394-404.	6.7	241
10	Chemical Distribution of Multiple Cation (Rb ⁺ , Cs ⁺ , MA ⁺ , and) Tj ETQq0 29, 3589-3596.	0 0 rgBT / 6.7	Overlock 10 Tf 175
11	An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 2018, 49, 614-624.	16.0	169
12	Electronic Structure of CH ₃ NH ₃ PbX ₃ Perovskites: Dependence on the Halide Moiety. Journal of Physical Chemistry C, 2015, 119, 1818-1825.	3.1	127
13	Potassium- and Rubidium-Passivated Alloyed Perovskite Films: Optoelectronic Properties and Moisture Stability. ACS Energy Letters, 2018, 3, 2671-2678.	17.4	126
14	Enhanced Crystallinity in Organic–Inorganic Lead Halide Perovskites on Mesoporous TiO ₂ via Disorder–Order Phase Transition. Chemistry of Materials, 2014, 26, 4466-4471.	6.7	118
15	Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. ACS Nano, 2018, 12, 7301-7311.	14.6	101
16	Investigation of the Electrode/Electrolyte Interface of Fe ₂ O ₃ Composite Electrodes: Li vs Na Batteries. Chemistry of Materials, 2014, 26, 5028-5041.	6.7	99
17	Vapor phase conversion of Pbl ₂ to CH ₃ NH ₃ Pbl ₃ : spectroscopic evidence for formation of an intermediate phase. Journal of Materials Chemistry A, 2016, 4, 2630-2642.	10.3	98
18	Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy. Journal of Physical Chemistry C, 2017, 121, 26655-26666.	3.1	98

#	Article	IF	CITATIONS
19	Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. Journal of Materials Chemistry A, 2015, 3, 21760-21771.	10.3	96
20	Fast-charging effects on ageing for energy-optimized automotive LiNi1/3Mn1/3Co1/3O2/graphite prismatic lithium-ion cells. Journal of Power Sources, 2019, 422, 175-184.	7.8	86
21	Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species. ACS Catalysis, 2017, 7, 1143-1149.	11.2	74
22	Extending the Compositional Space of Mixed Lead Halide Perovskites by Cs, Rb, K, and Na Doping. Journal of Physical Chemistry C, 2018, 122, 13548-13557.	3.1	70
23	Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH) ₂ and Carbon Nanotubes. Advanced Energy Materials, 2016, 6, 1600516.	19.5	68
24	Insights into the Mechanism of a Covalently Linked Organic Dye–Cobaloxime Catalyst System for Dyeâ€6ensitized Solar Fuel Devices. ChemSusChem, 2017, 10, 2480-2495.	6.8	65
25	Partially Reversible Photoinduced Chemical Changes in a Mixed-Ion Perovskite Material for Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 34970-34978.	8.0	65
26	Passivation Layer and Cathodic Redox Reactions in Sodiumâ€ion Batteries Probed by HAXPES. ChemSusChem, 2016, 9, 97-108.	6.8	64
27	Defective and " <i>c</i> -Disordered― <i>Hortensia</i> -like Layered MnO _{<i>x</i>} as an Efficient Electrocatalyst for Water Oxidation at Neutral pH. ACS Catalysis, 2017, 7, 6311-6322.	11.2	62
28	Cesium Bismuth Iodide Solar Cells from Systematic Molar Ratio Variation of CsI and Bil ₃ . Inorganic Chemistry, 2019, 58, 12040-12052.	4.0	45
29	Electrochemical driven water oxidation by molecular catalysts in situ polymerized on the surface of graphite carbon electrode. Chemical Communications, 2015, 51, 7883-7886.	4.1	42
30	MnSn2 electrodes for Li-ion batteries: Mechanisms at the nano scale and electrode/electrolyte interface. Electrochimica Acta, 2014, 123, 72-83.	5.2	40
31	Impact of synthetic routes on the structural and physical properties of butyl-1,4-diammonium lead iodide semiconductors. Journal of Materials Chemistry A, 2017, 5, 11730-11738.	10.3	37
32	Photoelectron Spectroscopic Evidence for Overlapping Redox Reactions for SnO ₂ Electrodes in Lithium-Ion Batteries. Journal of Physical Chemistry C, 2017, 121, 4924-4936.	3.1	31
33	Investigating the Interfacial Chemistry of Organic Electrodes in Li- and Na-Ion Batteries. Chemistry of Materials, 2016, 28, 8742-8751.	6.7	30
34	Electronic Structure of Two-Dimensional Lead(II) Iodide Perovskites: An Experimental and Theoretical Study. Chemistry of Materials, 2018, 30, 4959-4967.	6.7	29
35	Electrochemical performances and mechanisms of MnSn2 as anode material for Li-ion batteries. Journal of Power Sources, 2013, 244, 246-251.	7.8	26
36	Towards efficient and robust anodes for water splitting: Immobilization of Ru catalysts on carbon electrode and hematite by in situ polymerization. Catalysis Today, 2017, 290, 73-77.	4.4	22

#	Article	IF	CITATIONS
37	The electronic structure and band interface of cesium bismuth iodide on a titania heterostructure using hard X-ray spectroscopy. Journal of Materials Chemistry A, 2018, 6, 9498-9505.	10.3	19
38	Insight into the processes controlling the electrochemical reactions of nanostructured iron oxide electrodes in Li- and Na-half cells. Electrochimica Acta, 2016, 194, 74-83.	5. 2	12
39	Band alignment at $Ag/ZnO(0001)$ interfaces: A combined soft and hard x-ray photoemission study. Physical Review B, 2018, 97, .	3.2	8
40	Photoelectron spectroscopy investigations of halide perovskite materials used in solar cells. , 2020, , 109-137.		5
41	Electronic Structure Characterization of Crossâ€Linked Sulfur Polymers. ChemPhysChem, 2018, 19, 1041-1047.	2.1	4
42	Carbon Nanotubes: Promoting the Water Oxidation Catalysis by Synergistic Interactions between Ni(OH)2and Carbon Nanotubes (Adv. Energy Mater. 15/2016). Advanced Energy Materials, 2016, 6, .	19.5	0