Chrystele Sanloup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8335940/publications.pdf

Version: 2024-02-01

61 4,237 32 h-index

64 64 64 3476
all docs docs citations times ranked citing authors

57

g-index

#	Article	IF	CITATIONS
1	Synthesis and characterization of a binary noble metal nitride. Nature Materials, 2004, 3, 294-297.	27.5	500
2	Synthesis of Novel Transition Metal NitridesIrN2andOsN2. Physical Review Letters, 2006, 96, 155501.	7.8	481
3	The chemical composition of the Earth: Enstatite chondrite models. Earth and Planetary Science Letters, 2010, 293, 259-268.	4.4	363
4	Experimentally determined postspinel transformation boundary in Mg2SiO4using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 2004, 109, .	3.3	342
5	A simple chondritic model of Mars. Physics of the Earth and Planetary Interiors, 1999, 112, 43-54.	1.9	197
6	Density measurements of liquid Fe-S alloys at high-pressure. Geophysical Research Letters, 2000, 27, 811-814.	4.0	152
7	Structural change in molten basalt at deep mantle conditions. Nature, 2013, 503, 104-107.	27.8	145
8	High P-T transformations of nitrogen to 170GPa. Journal of Chemical Physics, 2007, 126, 184505.	3.0	130
9	A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Physics of the Earth and Planetary Interiors, 2004, 143-144, 515-526.	1.9	127
10	Interstitial dinitrogen makesPtN2an insulating hard solid. Physical Review B, 2006, 73, .	3.2	125
11	Retention of Xenon in Quartz and Earth's Missing Xenon. Science, 2005, 310, 1174-1177.	12.6	99
12	OsN2: Crystal structure and electronic properties. Applied Physics Letters, 2007, 90, 011909.	3.3	87
13	In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65ÂGPa. Earth and Planetary Science Letters, 2008, 272, 620-626.	4.4	85
14	Structure of eutectic Fe–FeS melts to pressures up to 17ÂGPa: Implications for planetary cores. Earth and Planetary Science Letters, 2007, 263, 128-139.	4.4	77
15	Thermal equation of state of cubic boron nitride: Implications for a high-temperature pressure scale. Physical Review B, 2007, 75, .	3.2	73
16	Effect of Si on liquid Fe compressibility: Implications for sound velocity in core materials. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	71
17	Structural changes in liquid Fe at high pressures and high temperatures from Synchrotron X-ray Diffraction. Europhysics Letters, 2000, 52, 151-157.	2.0	69
18	High-pressure transformations in xenon hydrates. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 25-28.	7.1	66

#	Article	IF	Citations
19	Physical properties of liquid Fe alloys at high pressure and their bearings on the nature of metallic planetary cores. Journal of Geophysical Research, 2002, 107, ECV 4-1-ECV 4-9.	3.3	65
20	Closure of the Fe–S–Si liquid miscibility gap at high pressure. Physics of the Earth and Planetary Interiors, 2004, 147, 57-65.	1.9	63
21	Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nature Geoscience, 2012, 5, 186-189.	12.9	58
22	Compressibility change in iron-rich melt and implications for core formation models. Earth and Planetary Science Letters, 2011, 306, 118-122.	4.4	56
23	Structure and density of molten fayalite at high pressure. Geochimica Et Cosmochimica Acta, 2013, 118, 118-128.	3.9	51
24	Optimization of Paris–Edinburgh press cell assemblies for <i>in situ</i> monochromatic X-ray diffraction and X-ray absorption. High Pressure Research, 2007, 27, 223-233.	1.2	48
25	Dissociative melting of ice VII at high pressure. Journal of Chemical Physics, 2009, 130, 124514. Structure of (Fe <mml:math)="" 0="" etqq0="" overlock<="" rgbt="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.0 10 Tf 50 4</td><td>45 482 Td (display</td></mml:math>	3.0 10 Tf 50 4	45 482 Td (display
26	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow< th=""><th></th><th></th></mml:mrow<></mml:msub>		

#	Article	IF	Citations
37	Viscosity of liquid fayalite up to 9 GPa. Geochimica Et Cosmochimica Acta, 2015, 148, 219-227.	3.9	26
38	Bromine speciation in hydrous silicate melts at high pressure. Chemical Geology, 2015, 404, 18-26.	3.3	26
39	Xenon and Argon: A contrasting behavior in olivine at depth. Geochimica Et Cosmochimica Acta, 2011, 75, 6271-6284.	3.9	25
40	Evidence for xenon silicates at high pressure and temperature. Geophysical Research Letters, 2002, 29, 30-1-30-4.	4.0	24
41	On the Ϊμ-ζ transition of nitrogen. Journal of Chemical Physics, 2006, 124, 116102.	3.0	21
42	First-principles modeling of chlorine isotope fractionation between chloride-bearing molecules and minerals. Chemical Geology, 2019, 525, 424-434.	3.3	21
43	Properties of molten CaCO3 at high pressure. Geochemical Perspectives Letters, 0, , 17-21.	5.0	18
44	Calibration of a diamond capsule cell assembly for <i>in situ</i> determination of liquid properties in the Paris–Edinburgh press. High Pressure Research, 2010, 30, 332-341.	1.2	14
45	New constraints on Xe incorporation mechanisms in olivine from first-principles calculations. Geochimica Et Cosmochimica Acta, 2018, 222, 146-155.	3.9	14
46	Lutetium incorporation in magmas at depth: Changes in melt local environment and the influence on partitioning behaviour. Earth and Planetary Science Letters, 2017, 464, 155-165.	4.4	13
47	Xenon and iodine behaviour in magmas. Earth and Planetary Science Letters, 2019, 522, 144-154.	4.4	10
48	Bonding of xenon to oxygen in magmas at depth. Earth and Planetary Science Letters, 2018, 484, 103-110.	4.4	9
49	The Xeâ€SiO 2 System at Moderate Pressure and High Temperature. Geochemistry, Geophysics, Geosystems, 2019, 20, 992-1003.	2.5	7
50	Amorpheus: a Python-based software for the treatment of X-ray scattering data of amorphous and liquid systems. High Pressure Research, 2022, 42, 69-93.	1.2	7
51	Kr environment in feldspathic glass and melt: A high pressure, high temperature X-ray absorption study. Chemical Geology, 2018, 493, 525-531.	3.3	6
52	Noble Gas Reactivity in Planetary Interiors. Frontiers in Physics, 2020, 8, .	2.1	6
53	Deep Earth carbon reactions through time and space. American Mineralogist, 2020, 105, 22-27.	1.9	5
54	Behaviour of niobium during early Earth's differentiation: insights from its local structure and oxidation state in silicate melts at high pressure. Journal of Physics Condensed Matter, 2018, 30, 084004.	1.8	4

#	Article	IF	CITATIONS
55	Polymerized 4-Fold Coordinated Carbonate Melts in the Deep Mantle. Frontiers in Earth Science, 2019, 7, .	1.8	3
56	High-pressure experimental geosciences: state of the art and prospects. Bulletin - Societie Geologique De France, 2012, 183, 175-187.	2.2	2
57	Amorphous Materials at High Pressure. NATO Science for Peace and Security Series B: Physics and Biophysics, 2010, , 459-468.	0.3	1
58	X-Ray Diffraction Structure Measurements. , 2018, , 137-153.		1
59	Probing of Structure Factor of Water to 57 GPa and 1500 K. Materials Research Society Symposia Proceedings, 2006, 987, 1.	0.1	0
60	The Deep Earth. Scottish Graduate Series, 2012, , 195-208.	0.1	0
61	Hadean isotopic fractionation of xenon retained in deep silicates. Nature, 2022, 606, 713-717.	27.8	0